Discover new information and insights with the help of IDNLearn.com. Ask anything and receive immediate, well-informed answers from our dedicated community of experts.
Sagot :
To determine if the integral
[tex]\[ \int_0^1 \frac{1}{x^2+\sqrt{x}} \, dx \][/tex]
converges without actually evaluating it, we can use the Direct Comparison Test. Here’s a detailed, step-by-step solution:
### Step 1: Identify and analyze the integrand
Given the function inside the integral is:
[tex]\[ f(x) = \frac{1}{x^2 + \sqrt{x}} \][/tex]
This function is continuous for [tex]\( x \)[/tex] in the interval [tex]\([0, 1]\)[/tex] except at [tex]\( x = 0 \)[/tex]. To apply the Direct Comparison Test, we seek a simpler function [tex]\(g(x)\)[/tex] such that [tex]\(f(x) \leq g(x)\)[/tex] and [tex]\(g(x)\)[/tex] is easier to integrate and analyze over the interval [tex]\([0, 1]\)[/tex].
### Step 2: Identify a suitable comparison function
We observe the behavior of [tex]\(x^2\)[/tex] and [tex]\(\sqrt{x}\)[/tex] on the interval [tex]\([0, 1]\)[/tex]:
1. For [tex]\( 0 \leq x < 1 \)[/tex], [tex]\(x^2\)[/tex] is always non-negative and thus [tex]\(\sqrt{x}\)[/tex] provides the dominant term in the denominator near [tex]\(x = 0\)[/tex].
2. We need a function [tex]\(g(x)\)[/tex] that is greater than or equal to [tex]\(\frac{1}{x^2 + \sqrt{x}}\)[/tex].
Let’s consider:
[tex]\[ g(x) = \frac{1}{\sqrt{x}} \][/tex]
since [tex]\(x^2 \geq 0\)[/tex] for [tex]\(x \in [0, 1]\)[/tex], it follows that:
[tex]\[ x^2 + \sqrt{x} \geq \sqrt{x} \][/tex]
Therefore,
[tex]\[ \frac{1}{x^2 + \sqrt{x}} \leq \frac{1}{\sqrt{x}} \][/tex]
for [tex]\(0 < x \leq 1\)[/tex].
### Step 3: Examine the comparison integral
We now evaluate whether the comparison integral converges:
[tex]\[ \int_0^1 \frac{1}{\sqrt{x}} \, dx \][/tex]
To integrate [tex]\(\frac{1}{\sqrt{x}}\)[/tex]:
[tex]\[ \int_0^1 \frac{1}{\sqrt{x}} \, dx = \int_0^1 x^{-\frac{1}{2}} \, dx \][/tex]
This simplifies to:
[tex]\[ \left[ 2x^{\frac{1}{2}} \right]_0^1 = 2 \left[ x^{\frac{1}{2}} \right]_0^1 = 2 \left( 1^{\frac{1}{2}} - 0^{\frac{1}{2}} \right) = 2(1) = 2 \][/tex]
Since the integral [tex]\(\int_0^1 \frac{1}{\sqrt{x}} \, dx\)[/tex] converges to a finite value, it provides an upper bound for [tex]\(\frac{1}{x^2 + \sqrt{x}}\)[/tex].
### Step 4: Apply the Direct Comparison Test
By the Direct Comparison Test:
- Since [tex]\( \frac{1}{x^2 + \sqrt{x}} \leq \frac{1}{\sqrt{x}} \)[/tex] for [tex]\(0 < x \leq 1\)[/tex], and
- The integral [tex]\(\int_0^1 \frac{1}{\sqrt{x}} \, dx\)[/tex] converges,
we can conclude that:
[tex]\[ \int_0^1 \frac{1}{x^2 + \sqrt{x}} \, dx \][/tex]
also converges.
Thus, based on the Direct Comparison Test, we have shown that the integral [tex]\(\int_0^1 \frac{1}{x^2 + \sqrt{x}} \, dx\)[/tex] converges.
[tex]\[ \int_0^1 \frac{1}{x^2+\sqrt{x}} \, dx \][/tex]
converges without actually evaluating it, we can use the Direct Comparison Test. Here’s a detailed, step-by-step solution:
### Step 1: Identify and analyze the integrand
Given the function inside the integral is:
[tex]\[ f(x) = \frac{1}{x^2 + \sqrt{x}} \][/tex]
This function is continuous for [tex]\( x \)[/tex] in the interval [tex]\([0, 1]\)[/tex] except at [tex]\( x = 0 \)[/tex]. To apply the Direct Comparison Test, we seek a simpler function [tex]\(g(x)\)[/tex] such that [tex]\(f(x) \leq g(x)\)[/tex] and [tex]\(g(x)\)[/tex] is easier to integrate and analyze over the interval [tex]\([0, 1]\)[/tex].
### Step 2: Identify a suitable comparison function
We observe the behavior of [tex]\(x^2\)[/tex] and [tex]\(\sqrt{x}\)[/tex] on the interval [tex]\([0, 1]\)[/tex]:
1. For [tex]\( 0 \leq x < 1 \)[/tex], [tex]\(x^2\)[/tex] is always non-negative and thus [tex]\(\sqrt{x}\)[/tex] provides the dominant term in the denominator near [tex]\(x = 0\)[/tex].
2. We need a function [tex]\(g(x)\)[/tex] that is greater than or equal to [tex]\(\frac{1}{x^2 + \sqrt{x}}\)[/tex].
Let’s consider:
[tex]\[ g(x) = \frac{1}{\sqrt{x}} \][/tex]
since [tex]\(x^2 \geq 0\)[/tex] for [tex]\(x \in [0, 1]\)[/tex], it follows that:
[tex]\[ x^2 + \sqrt{x} \geq \sqrt{x} \][/tex]
Therefore,
[tex]\[ \frac{1}{x^2 + \sqrt{x}} \leq \frac{1}{\sqrt{x}} \][/tex]
for [tex]\(0 < x \leq 1\)[/tex].
### Step 3: Examine the comparison integral
We now evaluate whether the comparison integral converges:
[tex]\[ \int_0^1 \frac{1}{\sqrt{x}} \, dx \][/tex]
To integrate [tex]\(\frac{1}{\sqrt{x}}\)[/tex]:
[tex]\[ \int_0^1 \frac{1}{\sqrt{x}} \, dx = \int_0^1 x^{-\frac{1}{2}} \, dx \][/tex]
This simplifies to:
[tex]\[ \left[ 2x^{\frac{1}{2}} \right]_0^1 = 2 \left[ x^{\frac{1}{2}} \right]_0^1 = 2 \left( 1^{\frac{1}{2}} - 0^{\frac{1}{2}} \right) = 2(1) = 2 \][/tex]
Since the integral [tex]\(\int_0^1 \frac{1}{\sqrt{x}} \, dx\)[/tex] converges to a finite value, it provides an upper bound for [tex]\(\frac{1}{x^2 + \sqrt{x}}\)[/tex].
### Step 4: Apply the Direct Comparison Test
By the Direct Comparison Test:
- Since [tex]\( \frac{1}{x^2 + \sqrt{x}} \leq \frac{1}{\sqrt{x}} \)[/tex] for [tex]\(0 < x \leq 1\)[/tex], and
- The integral [tex]\(\int_0^1 \frac{1}{\sqrt{x}} \, dx\)[/tex] converges,
we can conclude that:
[tex]\[ \int_0^1 \frac{1}{x^2 + \sqrt{x}} \, dx \][/tex]
also converges.
Thus, based on the Direct Comparison Test, we have shown that the integral [tex]\(\int_0^1 \frac{1}{x^2 + \sqrt{x}} \, dx\)[/tex] converges.
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and see you next time for more reliable information.