Get detailed and accurate answers to your questions on IDNLearn.com. Discover thorough and trustworthy answers from our community of knowledgeable professionals, tailored to meet your specific needs.

Apply the Direct Comparison Test to determine if the following integral converges. (Do NOT evaluate the integral)

[tex]\[ \int_0^1 \frac{1}{x^2+\sqrt{x}} \, dx \][/tex]


Sagot :

To determine if the integral

[tex]\[ \int_0^1 \frac{1}{x^2+\sqrt{x}} \, dx \][/tex]

converges without actually evaluating it, we can use the Direct Comparison Test. Here’s a detailed, step-by-step solution:

### Step 1: Identify and analyze the integrand
Given the function inside the integral is:

[tex]\[ f(x) = \frac{1}{x^2 + \sqrt{x}} \][/tex]

This function is continuous for [tex]\( x \)[/tex] in the interval [tex]\([0, 1]\)[/tex] except at [tex]\( x = 0 \)[/tex]. To apply the Direct Comparison Test, we seek a simpler function [tex]\(g(x)\)[/tex] such that [tex]\(f(x) \leq g(x)\)[/tex] and [tex]\(g(x)\)[/tex] is easier to integrate and analyze over the interval [tex]\([0, 1]\)[/tex].

### Step 2: Identify a suitable comparison function
We observe the behavior of [tex]\(x^2\)[/tex] and [tex]\(\sqrt{x}\)[/tex] on the interval [tex]\([0, 1]\)[/tex]:

1. For [tex]\( 0 \leq x < 1 \)[/tex], [tex]\(x^2\)[/tex] is always non-negative and thus [tex]\(\sqrt{x}\)[/tex] provides the dominant term in the denominator near [tex]\(x = 0\)[/tex].
2. We need a function [tex]\(g(x)\)[/tex] that is greater than or equal to [tex]\(\frac{1}{x^2 + \sqrt{x}}\)[/tex].

Let’s consider:

[tex]\[ g(x) = \frac{1}{\sqrt{x}} \][/tex]

since [tex]\(x^2 \geq 0\)[/tex] for [tex]\(x \in [0, 1]\)[/tex], it follows that:

[tex]\[ x^2 + \sqrt{x} \geq \sqrt{x} \][/tex]

Therefore,

[tex]\[ \frac{1}{x^2 + \sqrt{x}} \leq \frac{1}{\sqrt{x}} \][/tex]

for [tex]\(0 < x \leq 1\)[/tex].

### Step 3: Examine the comparison integral
We now evaluate whether the comparison integral converges:

[tex]\[ \int_0^1 \frac{1}{\sqrt{x}} \, dx \][/tex]

To integrate [tex]\(\frac{1}{\sqrt{x}}\)[/tex]:

[tex]\[ \int_0^1 \frac{1}{\sqrt{x}} \, dx = \int_0^1 x^{-\frac{1}{2}} \, dx \][/tex]

This simplifies to:

[tex]\[ \left[ 2x^{\frac{1}{2}} \right]_0^1 = 2 \left[ x^{\frac{1}{2}} \right]_0^1 = 2 \left( 1^{\frac{1}{2}} - 0^{\frac{1}{2}} \right) = 2(1) = 2 \][/tex]

Since the integral [tex]\(\int_0^1 \frac{1}{\sqrt{x}} \, dx\)[/tex] converges to a finite value, it provides an upper bound for [tex]\(\frac{1}{x^2 + \sqrt{x}}\)[/tex].

### Step 4: Apply the Direct Comparison Test
By the Direct Comparison Test:

- Since [tex]\( \frac{1}{x^2 + \sqrt{x}} \leq \frac{1}{\sqrt{x}} \)[/tex] for [tex]\(0 < x \leq 1\)[/tex], and
- The integral [tex]\(\int_0^1 \frac{1}{\sqrt{x}} \, dx\)[/tex] converges,

we can conclude that:

[tex]\[ \int_0^1 \frac{1}{x^2 + \sqrt{x}} \, dx \][/tex]

also converges.

Thus, based on the Direct Comparison Test, we have shown that the integral [tex]\(\int_0^1 \frac{1}{x^2 + \sqrt{x}} \, dx\)[/tex] converges.