Join IDNLearn.com and start getting the answers you've been searching for. Our platform provides accurate, detailed responses to help you navigate any topic with ease.

Apply the Limit Comparison Test to determine if the following integral converges. (Do NOT evaluate the integral)

[tex]\[
\int_1^{\infty} \frac{e^x}{x \sqrt{e^{2 x}+4}} \, dx
\][/tex]


Sagot :

To determine whether the given integral
[tex]\[ \int_1^{\infty} \frac{e^x}{x \sqrt{e^{2x} + 4}} \, dx \][/tex]
converges or diverges, we will use the Limit Comparison Test.

Firstly, let's identify an appropriate function [tex]\( g(x) \)[/tex] to compare with our function
[tex]\[ f(x) = \frac{e^x}{x \sqrt{e^{2x} + 4}}. \][/tex]

Since [tex]\( e^{2x} \)[/tex] grows much faster than 4 as [tex]\( x \)[/tex] approaches infinity, for large [tex]\( x \)[/tex], [tex]\( e^{2x} + 4 \approx e^{2x} \)[/tex].
Thus, we can approximate [tex]\( f(x) \)[/tex] by:
[tex]\[ f(x) \approx \frac{e^x}{x \sqrt{e^{2x}}} = \frac{e^x}{x e^x} = \frac{1}{x}. \][/tex]

So, let's choose [tex]\( g(x) = \frac{1}{x} \)[/tex]. This function is simpler to work with and easier to compare.

Now, let's apply the Limit Comparison Test by finding the limit of the ratio of [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{f(x)}{g(x)}. \][/tex]

Substitute [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]:
[tex]\[ \lim_{x \to \infty} \frac{\frac{e^x}{x \sqrt{e^{2x} + 4}}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{e^x}{x \sqrt{e^{2x} + 4}} \cdot x = \lim_{x \to \infty} \frac{e^x \cdot x}{x \sqrt{e^{2x} + 4}} = \lim_{x \to \infty} \frac{e^x}{\sqrt{e^{2x} + 4}}. \][/tex]

Next, we simplify the denominator:
[tex]\[ e^{2x} + 4 \approx e^{2x} \text{ for large } x. \][/tex]
Hence:
[tex]\[ \sqrt{e^{2x} + 4} \approx \sqrt{e^{2x}} = e^x. \][/tex]

So:
[tex]\[ \lim_{x \to \infty} \frac{e^x}{\sqrt{e^{2x} + 4}} \approx \lim_{x \to \infty} \frac{e^x}{e^x} = \lim_{x \to \infty} 1 = 1. \][/tex]

Since the limit is a positive finite number (in this case, 1), the Limit Comparison Test tells us that [tex]\( \int_1^{\infty} \frac{e^x}{x \sqrt{e^{2x} + 4}} \, dx \)[/tex] will converge or diverge together with [tex]\( \int_1^{\infty} \frac{1}{x} \, dx \)[/tex].

We know that:
[tex]\[ \int_1^{\infty} \frac{1}{x} \, dx \][/tex]
is a divergent integral (it is the integral of [tex]\( \frac{1}{x} \)[/tex] from 1 to infinity, which is a well-known divergent integral).

Therefore, by the Limit Comparison Test, the given integral:
[tex]\[ \int_1^{\infty} \frac{e^x}{x \sqrt{e^{2x} + 4}} \, dx \][/tex]
also diverges.