IDNLearn.com provides a collaborative platform for sharing and gaining knowledge. Ask any question and get a thorough, accurate answer from our community of experienced professionals.
Sagot :
To determine whether the given integral
[tex]\[ \int_1^{\infty} \frac{e^x}{x \sqrt{e^{2x} + 4}} \, dx \][/tex]
converges or diverges, we will use the Limit Comparison Test.
Firstly, let's identify an appropriate function [tex]\( g(x) \)[/tex] to compare with our function
[tex]\[ f(x) = \frac{e^x}{x \sqrt{e^{2x} + 4}}. \][/tex]
Since [tex]\( e^{2x} \)[/tex] grows much faster than 4 as [tex]\( x \)[/tex] approaches infinity, for large [tex]\( x \)[/tex], [tex]\( e^{2x} + 4 \approx e^{2x} \)[/tex].
Thus, we can approximate [tex]\( f(x) \)[/tex] by:
[tex]\[ f(x) \approx \frac{e^x}{x \sqrt{e^{2x}}} = \frac{e^x}{x e^x} = \frac{1}{x}. \][/tex]
So, let's choose [tex]\( g(x) = \frac{1}{x} \)[/tex]. This function is simpler to work with and easier to compare.
Now, let's apply the Limit Comparison Test by finding the limit of the ratio of [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{f(x)}{g(x)}. \][/tex]
Substitute [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]:
[tex]\[ \lim_{x \to \infty} \frac{\frac{e^x}{x \sqrt{e^{2x} + 4}}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{e^x}{x \sqrt{e^{2x} + 4}} \cdot x = \lim_{x \to \infty} \frac{e^x \cdot x}{x \sqrt{e^{2x} + 4}} = \lim_{x \to \infty} \frac{e^x}{\sqrt{e^{2x} + 4}}. \][/tex]
Next, we simplify the denominator:
[tex]\[ e^{2x} + 4 \approx e^{2x} \text{ for large } x. \][/tex]
Hence:
[tex]\[ \sqrt{e^{2x} + 4} \approx \sqrt{e^{2x}} = e^x. \][/tex]
So:
[tex]\[ \lim_{x \to \infty} \frac{e^x}{\sqrt{e^{2x} + 4}} \approx \lim_{x \to \infty} \frac{e^x}{e^x} = \lim_{x \to \infty} 1 = 1. \][/tex]
Since the limit is a positive finite number (in this case, 1), the Limit Comparison Test tells us that [tex]\( \int_1^{\infty} \frac{e^x}{x \sqrt{e^{2x} + 4}} \, dx \)[/tex] will converge or diverge together with [tex]\( \int_1^{\infty} \frac{1}{x} \, dx \)[/tex].
We know that:
[tex]\[ \int_1^{\infty} \frac{1}{x} \, dx \][/tex]
is a divergent integral (it is the integral of [tex]\( \frac{1}{x} \)[/tex] from 1 to infinity, which is a well-known divergent integral).
Therefore, by the Limit Comparison Test, the given integral:
[tex]\[ \int_1^{\infty} \frac{e^x}{x \sqrt{e^{2x} + 4}} \, dx \][/tex]
also diverges.
[tex]\[ \int_1^{\infty} \frac{e^x}{x \sqrt{e^{2x} + 4}} \, dx \][/tex]
converges or diverges, we will use the Limit Comparison Test.
Firstly, let's identify an appropriate function [tex]\( g(x) \)[/tex] to compare with our function
[tex]\[ f(x) = \frac{e^x}{x \sqrt{e^{2x} + 4}}. \][/tex]
Since [tex]\( e^{2x} \)[/tex] grows much faster than 4 as [tex]\( x \)[/tex] approaches infinity, for large [tex]\( x \)[/tex], [tex]\( e^{2x} + 4 \approx e^{2x} \)[/tex].
Thus, we can approximate [tex]\( f(x) \)[/tex] by:
[tex]\[ f(x) \approx \frac{e^x}{x \sqrt{e^{2x}}} = \frac{e^x}{x e^x} = \frac{1}{x}. \][/tex]
So, let's choose [tex]\( g(x) = \frac{1}{x} \)[/tex]. This function is simpler to work with and easier to compare.
Now, let's apply the Limit Comparison Test by finding the limit of the ratio of [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{f(x)}{g(x)}. \][/tex]
Substitute [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]:
[tex]\[ \lim_{x \to \infty} \frac{\frac{e^x}{x \sqrt{e^{2x} + 4}}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{e^x}{x \sqrt{e^{2x} + 4}} \cdot x = \lim_{x \to \infty} \frac{e^x \cdot x}{x \sqrt{e^{2x} + 4}} = \lim_{x \to \infty} \frac{e^x}{\sqrt{e^{2x} + 4}}. \][/tex]
Next, we simplify the denominator:
[tex]\[ e^{2x} + 4 \approx e^{2x} \text{ for large } x. \][/tex]
Hence:
[tex]\[ \sqrt{e^{2x} + 4} \approx \sqrt{e^{2x}} = e^x. \][/tex]
So:
[tex]\[ \lim_{x \to \infty} \frac{e^x}{\sqrt{e^{2x} + 4}} \approx \lim_{x \to \infty} \frac{e^x}{e^x} = \lim_{x \to \infty} 1 = 1. \][/tex]
Since the limit is a positive finite number (in this case, 1), the Limit Comparison Test tells us that [tex]\( \int_1^{\infty} \frac{e^x}{x \sqrt{e^{2x} + 4}} \, dx \)[/tex] will converge or diverge together with [tex]\( \int_1^{\infty} \frac{1}{x} \, dx \)[/tex].
We know that:
[tex]\[ \int_1^{\infty} \frac{1}{x} \, dx \][/tex]
is a divergent integral (it is the integral of [tex]\( \frac{1}{x} \)[/tex] from 1 to infinity, which is a well-known divergent integral).
Therefore, by the Limit Comparison Test, the given integral:
[tex]\[ \int_1^{\infty} \frac{e^x}{x \sqrt{e^{2x} + 4}} \, dx \][/tex]
also diverges.
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your search for solutions ends here at IDNLearn.com. Thank you for visiting, and come back soon for more helpful information.