IDNLearn.com: Your one-stop destination for finding reliable answers. Discover in-depth and reliable answers to all your questions from our knowledgeable community members who are always ready to assist.
Sagot :
To determine the mass of [tex]\( \text{H}_2\text{O} \)[/tex] produced when 10.0 grams of [tex]\( \text{H}_2 \)[/tex] reacts completely with 80.0 grams of [tex]\( \text{O}_2 \)[/tex], follow these steps:
1. Calculate the moles of [tex]\( \text{H}_2 \)[/tex] and [tex]\( \text{O}_2 \)[/tex] given their masses and molar masses.
- Molar mass of [tex]\( \text{H}_2 \)[/tex] (Hydrogen gas) is [tex]\( 2.016 \, \text{g/mol} \)[/tex].
- Molar mass of [tex]\( \text{O}_2 \)[/tex] (Oxygen gas) is [tex]\( 32.00 \, \text{g/mol} \)[/tex].
For [tex]\( 10.0 \, \text{g} \)[/tex] of [tex]\( \text{H}_2 \)[/tex]:
[tex]\[ \text{Moles of } H_2 = \frac{10.0 \, \text{g}}{2.016 \, \text{g/mol}} = 4.9603174603174605 \, \text{mol} \][/tex]
For [tex]\( 80.0 \, \text{g} \)[/tex] of [tex]\( \text{O}_2 \)[/tex]:
[tex]\[ \text{Moles of } O_2 = \frac{80.0 \, \text{g}}{32.00 \, \text{g/mol}} = 2.5 \, \text{mol} \][/tex]
2. Use the balanced chemical equation to determine the limiting reactant.
The balanced reaction equation is:
[tex]\[ 2 H_2 + O_2 \rightarrow 2 H_2O \][/tex]
According to the equation, 2 moles of [tex]\( \text{H}_2 \)[/tex] react with 1 mole of [tex]\( \text{O}_2 \)[/tex]. Therefore, the moles of [tex]\( \text{H}_2 \)[/tex] required to react with [tex]\( \text{O}_2 \)[/tex] are:
[tex]\[ \text{Moles of } H_2 \text{ required} = 2 \times (\text{Moles of } O_2) = 2 \times 2.5 = 5.0 \, \text{mol} \][/tex]
However, we only have [tex]\( 4.9603174603174605 \)[/tex] moles of [tex]\( \text{H}_2 \)[/tex], which means [tex]\( \text{H}_2 \)[/tex] is the limiting reactant.
3. Calculate the moles of [tex]\( \text{H}_2\text{O} \)[/tex] produced.
From the balanced equation:
[tex]\[ 2 H_2 \rightarrow 2 H_2O \][/tex]
This implies the moles of [tex]\( \text{H}_2\text{O} \)[/tex] produced are equal to the moles of [tex]\( \text{H}_2 \)[/tex] used. Therefore, the moles of [tex]\( \text{H}_2\text{O} \)[/tex] produced are:
[tex]\[ \text{Moles of } H_2O = \frac{\text{Moles of } H_2}{2} \times 2 = 4.9603174603174605 \, \text{mol} \][/tex]
4. Calculate the mass of [tex]\( \text{H}_2\text{O} \)[/tex] produced.
- The molar mass of [tex]\( \text{H}_2\text{O} \)[/tex] (Water) is [tex]\( 18.016 \, \text{g/mol} \)[/tex].
Therefore, the mass of [tex]\( \text{H}_2\text{O} \)[/tex] produced is:
[tex]\[ \text{Mass of } H_2O = \text{Moles of } H_2O \times \text{Molar mass of } H_2O = 4.9603174603174605 \, \text{mol} \times 18.016 \, \text{g/mol} = 89.36507936507935 \, \text{g} \][/tex]
Given the choices, the closest and most reasonable matching option is [tex]\( 90.0 \, \text{g} \)[/tex].
Hence, the correct answer is:
[tex]\[ \boxed{90.0 \, \text{g}} \][/tex]
1. Calculate the moles of [tex]\( \text{H}_2 \)[/tex] and [tex]\( \text{O}_2 \)[/tex] given their masses and molar masses.
- Molar mass of [tex]\( \text{H}_2 \)[/tex] (Hydrogen gas) is [tex]\( 2.016 \, \text{g/mol} \)[/tex].
- Molar mass of [tex]\( \text{O}_2 \)[/tex] (Oxygen gas) is [tex]\( 32.00 \, \text{g/mol} \)[/tex].
For [tex]\( 10.0 \, \text{g} \)[/tex] of [tex]\( \text{H}_2 \)[/tex]:
[tex]\[ \text{Moles of } H_2 = \frac{10.0 \, \text{g}}{2.016 \, \text{g/mol}} = 4.9603174603174605 \, \text{mol} \][/tex]
For [tex]\( 80.0 \, \text{g} \)[/tex] of [tex]\( \text{O}_2 \)[/tex]:
[tex]\[ \text{Moles of } O_2 = \frac{80.0 \, \text{g}}{32.00 \, \text{g/mol}} = 2.5 \, \text{mol} \][/tex]
2. Use the balanced chemical equation to determine the limiting reactant.
The balanced reaction equation is:
[tex]\[ 2 H_2 + O_2 \rightarrow 2 H_2O \][/tex]
According to the equation, 2 moles of [tex]\( \text{H}_2 \)[/tex] react with 1 mole of [tex]\( \text{O}_2 \)[/tex]. Therefore, the moles of [tex]\( \text{H}_2 \)[/tex] required to react with [tex]\( \text{O}_2 \)[/tex] are:
[tex]\[ \text{Moles of } H_2 \text{ required} = 2 \times (\text{Moles of } O_2) = 2 \times 2.5 = 5.0 \, \text{mol} \][/tex]
However, we only have [tex]\( 4.9603174603174605 \)[/tex] moles of [tex]\( \text{H}_2 \)[/tex], which means [tex]\( \text{H}_2 \)[/tex] is the limiting reactant.
3. Calculate the moles of [tex]\( \text{H}_2\text{O} \)[/tex] produced.
From the balanced equation:
[tex]\[ 2 H_2 \rightarrow 2 H_2O \][/tex]
This implies the moles of [tex]\( \text{H}_2\text{O} \)[/tex] produced are equal to the moles of [tex]\( \text{H}_2 \)[/tex] used. Therefore, the moles of [tex]\( \text{H}_2\text{O} \)[/tex] produced are:
[tex]\[ \text{Moles of } H_2O = \frac{\text{Moles of } H_2}{2} \times 2 = 4.9603174603174605 \, \text{mol} \][/tex]
4. Calculate the mass of [tex]\( \text{H}_2\text{O} \)[/tex] produced.
- The molar mass of [tex]\( \text{H}_2\text{O} \)[/tex] (Water) is [tex]\( 18.016 \, \text{g/mol} \)[/tex].
Therefore, the mass of [tex]\( \text{H}_2\text{O} \)[/tex] produced is:
[tex]\[ \text{Mass of } H_2O = \text{Moles of } H_2O \times \text{Molar mass of } H_2O = 4.9603174603174605 \, \text{mol} \times 18.016 \, \text{g/mol} = 89.36507936507935 \, \text{g} \][/tex]
Given the choices, the closest and most reasonable matching option is [tex]\( 90.0 \, \text{g} \)[/tex].
Hence, the correct answer is:
[tex]\[ \boxed{90.0 \, \text{g}} \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your search for answers ends at IDNLearn.com. Thank you for visiting, and we hope to assist you again soon.