Find trusted answers to your questions with the help of IDNLearn.com's knowledgeable community. Get prompt and accurate answers to your questions from our experts who are always ready to help.

Evaluate the following improper integrals:

(a) [tex][tex]$\int_0^{\infty} \frac{e^{-x}}{1+e^{-x}} d x$[/tex][/tex]

(b) [tex][tex]$\int_1^2 \frac{1}{\sqrt{x-1}} d x$[/tex][/tex]


Sagot :

Certainly! Let's look at these improper integrals step-by-step.

### Part (a) [tex]\(\int_0^{\infty} \frac{e^{-x}}{1+e^{-x}} \,dx\)[/tex]

1. We begin with the integrand function:
[tex]\[ \frac{e^{-x}}{1 + e^{-x}} \][/tex]

2. This integrand can be simplified by noting a substitution. Let [tex]\( u = e^{-x} \)[/tex]. Hence, [tex]\( du = -e^{-x} \, dx = -u \, dx \)[/tex]. When [tex]\( x \to 0 \)[/tex], [tex]\( u \to 1 \)[/tex], and when [tex]\( x \to \infty \)[/tex], [tex]\( u \to 0 \)[/tex].

3. Rewrite the integral in terms of [tex]\( u \)[/tex]:
[tex]\[ \int_0^{\infty} \frac{e^{-x}}{1 + e^{-x}} \, dx = \int_1^{0} \frac{u}{1+u} \cdot \left( -\frac{1}{u} \, du \right) = \int_1^0 \frac{1}{1+u} \, du \][/tex]

4. Switching the limits of integration changes the sign:
[tex]\[ \int_1^0 \frac{1}{1+u} \, du = -\int_0^1 \frac{1}{1+u} \, du \][/tex]

5. This becomes a standard integral of the form:
[tex]\[ \int_0^1 \frac{1}{1+u} \, du = [ \log(1+u) ]_0^1 \][/tex]

6. Evaluating this definite integral:
[tex]\[ \log(1+1) - \log(1+0) = \log(2) - \log(1) = \log(2) \][/tex]

Thus, the result for part (a) is:
[tex]\[ \int_0^{\infty} \frac{e^{-x}}{1+e^{-x}} \,dx = \log(2) \][/tex]


### Part (b) [tex]\(\int_1^2 \frac{1}{\sqrt{x-1}} \,dx\)[/tex]

1. We start with the integrand function:
[tex]\[ \frac{1}{\sqrt{x-1}} \][/tex]

2. This is an improper integral because the integrand becomes infinite at the lower limit of integration [tex]\( x = 1 \)[/tex]. We can solve it by making a substitution [tex]\( u = x - 1 \)[/tex]. Hence, [tex]\( du = dx \)[/tex]. When [tex]\( x \to 1 \)[/tex], [tex]\( u \to 0 \)[/tex], and when [tex]\( x \to 2 \)[/tex], [tex]\( u \to 1 \)[/tex].

3. Rewrite the integral in terms of [tex]\( u \)[/tex]:
[tex]\[ \int_1^2 \frac{1}{\sqrt{x-1}} \, dx = \int_0^1 \frac{1}{\sqrt{u}} \, du \][/tex]

4. This becomes a standard integral:
[tex]\[ \int_0^1 u^{-\frac{1}{2}} \, du \][/tex]

5. Integrate using the power rule:
[tex]\[ \int_0^1 u^{-\frac{1}{2}} \, du = \left[ \frac{u^{\frac{1}{2}}}{\frac{1}{2}} \right]_0^1 = \left[ 2u^{\frac{1}{2}} \right]_0^1 \][/tex]

6. Evaluating this definite integral gives:
[tex]\[ 2(1^{\frac{1}{2}}) - 2(0^{\frac{1}{2}}) = 2(1) - 2(0) = 2 \][/tex]

Thus, the result for part (b) is:
[tex]\[ \int_1^2 \frac{1}{\sqrt{x-1}} \,dx = 2 \][/tex]

### Summary

The values of the improper integrals are:
[tex]\[ \text{(a)} \int_0^{\infty} \frac{e^{-x}}{1+e^{-x}} \,dx = \log(2) \][/tex]
[tex]\[ \text{(b)} \int_1^2 \frac{1}{\sqrt{x-1}} \,dx = 2 \][/tex]