Join the growing community of curious minds on IDNLearn.com and get the answers you need. Join our community to receive prompt and reliable responses to your questions from experienced professionals.
Sagot :
To determine the magnitude of the charge on the particle, we can use the formula for magnetic force on a moving charge:
[tex]\[ F = q \cdot v \cdot B \cdot \sin(\theta) \][/tex]
Where:
- [tex]\( F \)[/tex] is the magnetic force,
- [tex]\( q \)[/tex] is the charge,
- [tex]\( v \)[/tex] is the velocity of the particle,
- [tex]\( B \)[/tex] is the magnetic field strength,
- [tex]\( \theta \)[/tex] is the angle between the velocity and the magnetic field.
Given:
- The magnetic force [tex]\( F = 7.5 \times 10^{-2} \, \text{N} \)[/tex],
- The velocity [tex]\( v = 2.5 \times 10^4 \, \text{m/s} \)[/tex],
- The magnetic field strength [tex]\( B = 8.1 \times 10^{-2} \, \text{T} \)[/tex],
- The angle [tex]\( \theta = 25^\circ \)[/tex].
Let's calculate the magnitude of the charge [tex]\( q \)[/tex].
First, we need to convert the angle from degrees to radians since the trigonometric functions in physics typically use radians.
[tex]\[ \theta = 25^\circ = 25 \times \frac{\pi}{180} \approx 0.436 \, \text{radians} \][/tex]
Now, we can substitute these values into the magnetic force equation and solve for [tex]\( q \)[/tex]:
[tex]\[ q = \frac{F}{v \cdot B \cdot \sin(\theta)} \][/tex]
Let's plug in the known values:
[tex]\[ q = \frac{7.5 \times 10^{-2} \, \text{N}}{2.5 \times 10^4 \, \text{m/s} \times 8.1 \times 10^{-2} \, \text{T} \times \sin(0.436)} \][/tex]
Using the value we have for [tex]\(\sin(0.436) \approx 0.4226\)[/tex]:
[tex]\[ q = \frac{7.5 \times 10^{-2}}{2.5 \times 10^4 \times 8.1 \times 10^{-2} \times 0.4226} \][/tex]
[tex]\[ q \approx \frac{7.5 \times 10^{-2}}{8.52315 \times 10^{-1}} \][/tex]
[tex]\[ q \approx 8.763709567231476 \times 10^{-5} \, \text{C} \][/tex]
Therefore, the magnitude of the charge is approximately [tex]\( 8.8 \times 10^{-5} \, \text{C} \)[/tex].
Among the given options, the correct answer is:
[tex]\[ 8.8 \times 10^{-5} \, \text{C} \][/tex]
[tex]\[ F = q \cdot v \cdot B \cdot \sin(\theta) \][/tex]
Where:
- [tex]\( F \)[/tex] is the magnetic force,
- [tex]\( q \)[/tex] is the charge,
- [tex]\( v \)[/tex] is the velocity of the particle,
- [tex]\( B \)[/tex] is the magnetic field strength,
- [tex]\( \theta \)[/tex] is the angle between the velocity and the magnetic field.
Given:
- The magnetic force [tex]\( F = 7.5 \times 10^{-2} \, \text{N} \)[/tex],
- The velocity [tex]\( v = 2.5 \times 10^4 \, \text{m/s} \)[/tex],
- The magnetic field strength [tex]\( B = 8.1 \times 10^{-2} \, \text{T} \)[/tex],
- The angle [tex]\( \theta = 25^\circ \)[/tex].
Let's calculate the magnitude of the charge [tex]\( q \)[/tex].
First, we need to convert the angle from degrees to radians since the trigonometric functions in physics typically use radians.
[tex]\[ \theta = 25^\circ = 25 \times \frac{\pi}{180} \approx 0.436 \, \text{radians} \][/tex]
Now, we can substitute these values into the magnetic force equation and solve for [tex]\( q \)[/tex]:
[tex]\[ q = \frac{F}{v \cdot B \cdot \sin(\theta)} \][/tex]
Let's plug in the known values:
[tex]\[ q = \frac{7.5 \times 10^{-2} \, \text{N}}{2.5 \times 10^4 \, \text{m/s} \times 8.1 \times 10^{-2} \, \text{T} \times \sin(0.436)} \][/tex]
Using the value we have for [tex]\(\sin(0.436) \approx 0.4226\)[/tex]:
[tex]\[ q = \frac{7.5 \times 10^{-2}}{2.5 \times 10^4 \times 8.1 \times 10^{-2} \times 0.4226} \][/tex]
[tex]\[ q \approx \frac{7.5 \times 10^{-2}}{8.52315 \times 10^{-1}} \][/tex]
[tex]\[ q \approx 8.763709567231476 \times 10^{-5} \, \text{C} \][/tex]
Therefore, the magnitude of the charge is approximately [tex]\( 8.8 \times 10^{-5} \, \text{C} \)[/tex].
Among the given options, the correct answer is:
[tex]\[ 8.8 \times 10^{-5} \, \text{C} \][/tex]
Your participation is crucial to us. Keep sharing your knowledge and experiences. Let's create a learning environment that is both enjoyable and beneficial. Your search for solutions ends at IDNLearn.com. Thank you for visiting, and we look forward to helping you again.