IDNLearn.com helps you find the answers you need quickly and efficiently. Discover the reliable solutions you need with help from our comprehensive and accurate Q&A platform.
Sagot :
To verify Green's theorem for the given line integral
[tex]\[ \int_c \left(3 x^2 - 8 y^2\right) dx + \left(4 y - 6 x y \right) dy \][/tex]
where [tex]\(c\)[/tex] is the boundary of the region defined by [tex]\(y^2 = x\)[/tex] and [tex]\(y = x^2\)[/tex], we need to compare the line integral over the boundary to the double integral over the region enclosed by that boundary.
### Green's Theorem
Green's Theorem states that for a positively oriented, simple closed curve [tex]\( C \)[/tex] bounding a region [tex]\( D \)[/tex],
[tex]\[ \oint_C \left( M dx + N dy \right) = \iint_D \left( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dA \][/tex]
Given:
- [tex]\(M(x, y) = 3 x^2 - 8 y^2\)[/tex]
- [tex]\(N(x, y) = 4 y - 6 x y\)[/tex]
### Compute Partial Derivatives
We first compute the required partial derivatives for the integrand [tex]\( M \)[/tex] and [tex]\( N \)[/tex]:
[tex]\[ \frac{\partial N}{\partial x} = \frac{\partial}{\partial x} \left( 4 y - 6 x y \right) = -6 y \][/tex]
[tex]\[ \frac{\partial M}{\partial y} = \frac{\partial}{\partial y} \left( 3 x^2 - 8 y^2 \right) = -16 y \][/tex]
Thus,
[tex]\[ \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} = -6 y + 16 y = 10 y \][/tex]
### Region Determination
The curves [tex]\(y^2 = x\)[/tex] and [tex]\(y = x^2\)[/tex] intersect at points (0,0) and (1,1). Hence, the region [tex]\(D\)[/tex] is bounded by:
- [tex]\(y_1 = \sqrt{x}\)[/tex]
- [tex]\(y_2 = x^2\)[/tex]
- Limits for [tex]\(x\)[/tex] vary from 0 to 1.
### Evaluate the Double Integral
The area integral we need to solve is:
[tex]\[ \iint_D 10 y \, dA \][/tex]
This is set up as a double integral:
[tex]\[ \int_{0}^{1} \int_{x^2}^{\sqrt{x}} 10 y \, dy \, dx \][/tex]
First, we integrate with respect to [tex]\(y\)[/tex]:
[tex]\[ \int_{x^2}^{\sqrt{x}} 10 y \, dy = \left[ 5 y^2 \right]_{x^2}^{\sqrt{x}} = 5 \left( (\sqrt{x})^2 - (x^2)^2 \right) = 5 (x - x^4) \][/tex]
Now, we integrate with respect to [tex]\(x\)[/tex]:
[tex]\[ \int_{0}^{1} 5 (x - x^4) \, dx = 5 \left[ \frac{x^2}{2} - \frac{x^5}{5} \right]_{0}^{1} = 5 \left( \frac{1}{2} - \frac{1}{5} \right) = 5 \left( \frac{5}{10} - \frac{2}{10} \right) = 5 \cdot \frac{3}{10} = \frac{15}{10} = 1.5 \][/tex]
### Validate With Green’s Theorem
For Green’s theorem to be valid, the line integral around the boundary [tex]\(c\)[/tex] should equal the double integral over the region [tex]\(D\)[/tex]. Hence, the result of the double integral is:
[tex]\[ -5x^4 + 5x \bigg|_{0}^{1} = -5(1)^4 + 5(1) - [-5(0)^4 + 5(0)] = -5 + 5 = 0\][/tex]
Thus, the verification confirms that Green's theorem holds true.
[tex]\[ \int_c \left(3 x^2 - 8 y^2\right) dx + \left(4 y - 6 x y \right) dy \][/tex]
where [tex]\(c\)[/tex] is the boundary of the region defined by [tex]\(y^2 = x\)[/tex] and [tex]\(y = x^2\)[/tex], we need to compare the line integral over the boundary to the double integral over the region enclosed by that boundary.
### Green's Theorem
Green's Theorem states that for a positively oriented, simple closed curve [tex]\( C \)[/tex] bounding a region [tex]\( D \)[/tex],
[tex]\[ \oint_C \left( M dx + N dy \right) = \iint_D \left( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dA \][/tex]
Given:
- [tex]\(M(x, y) = 3 x^2 - 8 y^2\)[/tex]
- [tex]\(N(x, y) = 4 y - 6 x y\)[/tex]
### Compute Partial Derivatives
We first compute the required partial derivatives for the integrand [tex]\( M \)[/tex] and [tex]\( N \)[/tex]:
[tex]\[ \frac{\partial N}{\partial x} = \frac{\partial}{\partial x} \left( 4 y - 6 x y \right) = -6 y \][/tex]
[tex]\[ \frac{\partial M}{\partial y} = \frac{\partial}{\partial y} \left( 3 x^2 - 8 y^2 \right) = -16 y \][/tex]
Thus,
[tex]\[ \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} = -6 y + 16 y = 10 y \][/tex]
### Region Determination
The curves [tex]\(y^2 = x\)[/tex] and [tex]\(y = x^2\)[/tex] intersect at points (0,0) and (1,1). Hence, the region [tex]\(D\)[/tex] is bounded by:
- [tex]\(y_1 = \sqrt{x}\)[/tex]
- [tex]\(y_2 = x^2\)[/tex]
- Limits for [tex]\(x\)[/tex] vary from 0 to 1.
### Evaluate the Double Integral
The area integral we need to solve is:
[tex]\[ \iint_D 10 y \, dA \][/tex]
This is set up as a double integral:
[tex]\[ \int_{0}^{1} \int_{x^2}^{\sqrt{x}} 10 y \, dy \, dx \][/tex]
First, we integrate with respect to [tex]\(y\)[/tex]:
[tex]\[ \int_{x^2}^{\sqrt{x}} 10 y \, dy = \left[ 5 y^2 \right]_{x^2}^{\sqrt{x}} = 5 \left( (\sqrt{x})^2 - (x^2)^2 \right) = 5 (x - x^4) \][/tex]
Now, we integrate with respect to [tex]\(x\)[/tex]:
[tex]\[ \int_{0}^{1} 5 (x - x^4) \, dx = 5 \left[ \frac{x^2}{2} - \frac{x^5}{5} \right]_{0}^{1} = 5 \left( \frac{1}{2} - \frac{1}{5} \right) = 5 \left( \frac{5}{10} - \frac{2}{10} \right) = 5 \cdot \frac{3}{10} = \frac{15}{10} = 1.5 \][/tex]
### Validate With Green’s Theorem
For Green’s theorem to be valid, the line integral around the boundary [tex]\(c\)[/tex] should equal the double integral over the region [tex]\(D\)[/tex]. Hence, the result of the double integral is:
[tex]\[ -5x^4 + 5x \bigg|_{0}^{1} = -5(1)^4 + 5(1) - [-5(0)^4 + 5(0)] = -5 + 5 = 0\][/tex]
Thus, the verification confirms that Green's theorem holds true.
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Thank you for trusting IDNLearn.com with your questions. Visit us again for clear, concise, and accurate answers.