Get expert advice and community support for all your questions on IDNLearn.com. Discover in-depth and trustworthy answers to all your questions from our experienced community members.
Sagot :
Sure, let's prove the given trigonometric identity step-by-step.
We need to prove:
[tex]$(a \cos A + b \sin A )^2+( a \sin A - b \cos A )^2= a ^2+b^2.$[/tex]
Step 1: Expand the left-hand side (LHS).
First, we begin by expanding both squared terms in the LHS:
[tex]\[ (a \cos A + b \sin A )^2 = (a \cos A)^2 + (b \sin A)^2 + 2(a \cos A)(b \sin A) \][/tex]
[tex]\[ = a^2 \cos^2 A + b^2 \sin^2 A + 2ab \cos A \sin A \][/tex]
Next, we expand the second term:
[tex]\[ (a \sin A - b \cos A )^2 = (a \sin A)^2 + (-b \cos A)^2 + 2(a \sin A)(-b \cos A) \][/tex]
[tex]\[ = a^2 \sin^2 A + b^2 \cos^2 A - 2ab \sin A \cos A \][/tex]
Step 2: Combine the expanded terms.
Now, we combine the expanded terms:
[tex]\[ (a \cos A + b \sin A)^2 + (a \sin A - b \cos A)^2 = (a^2 \cos^2 A + b^2 \sin^2 A + 2ab \cos A \sin A) + (a^2 \sin^2 A + b^2 \cos^2 A - 2ab \sin A \cos A) \][/tex]
Step 3: Simplify the expression.
Collecting like terms, we get:
[tex]\[ a^2 \cos^2 A + b^2 \sin^2 A + 2ab \cos A \sin A + a^2 \sin^2 A + b^2 \cos^2 A - 2ab \sin A \cos A \][/tex]
Notice that the [tex]$+2ab \cos A \sin A$[/tex] and [tex]$-2ab \sin A \cos A$[/tex] terms cancel each other out:
[tex]\[ a^2 \cos^2 A + b^2 \sin^2 A + a^2 \sin^2 A + b^2 \cos^2 A \][/tex]
Combine the [tex]$a^2$[/tex] terms and the [tex]$b^2$[/tex] terms:
[tex]\[ a^2 (\cos^2 A + \sin^2 A) + b^2 (\sin^2 A + \cos^2 A) \][/tex]
Step 4: Use trigonometric identities.
Recall the fundamental trigonometric identities:
[tex]\[ \sin^2 A + \cos^2 A = 1 \][/tex]
Substitute these identities in the equation:
[tex]\[ a^2 (1) + b^2 (1) = a^2 + b^2 \][/tex]
Thus, we have proven that the left-hand side (LHS) is equal to the right-hand side (RHS):
[tex]\[ (a \cos A + b \sin A )^2+( a \sin A - b \cos A )^2 = a^2 + b^2 \][/tex]
Hence, the identity is proven:
[tex]\[ (a \cos A + b \sin A )^2+( a \sin A - b \cos A )^2 = a^2 + b^2 \][/tex]
We need to prove:
[tex]$(a \cos A + b \sin A )^2+( a \sin A - b \cos A )^2= a ^2+b^2.$[/tex]
Step 1: Expand the left-hand side (LHS).
First, we begin by expanding both squared terms in the LHS:
[tex]\[ (a \cos A + b \sin A )^2 = (a \cos A)^2 + (b \sin A)^2 + 2(a \cos A)(b \sin A) \][/tex]
[tex]\[ = a^2 \cos^2 A + b^2 \sin^2 A + 2ab \cos A \sin A \][/tex]
Next, we expand the second term:
[tex]\[ (a \sin A - b \cos A )^2 = (a \sin A)^2 + (-b \cos A)^2 + 2(a \sin A)(-b \cos A) \][/tex]
[tex]\[ = a^2 \sin^2 A + b^2 \cos^2 A - 2ab \sin A \cos A \][/tex]
Step 2: Combine the expanded terms.
Now, we combine the expanded terms:
[tex]\[ (a \cos A + b \sin A)^2 + (a \sin A - b \cos A)^2 = (a^2 \cos^2 A + b^2 \sin^2 A + 2ab \cos A \sin A) + (a^2 \sin^2 A + b^2 \cos^2 A - 2ab \sin A \cos A) \][/tex]
Step 3: Simplify the expression.
Collecting like terms, we get:
[tex]\[ a^2 \cos^2 A + b^2 \sin^2 A + 2ab \cos A \sin A + a^2 \sin^2 A + b^2 \cos^2 A - 2ab \sin A \cos A \][/tex]
Notice that the [tex]$+2ab \cos A \sin A$[/tex] and [tex]$-2ab \sin A \cos A$[/tex] terms cancel each other out:
[tex]\[ a^2 \cos^2 A + b^2 \sin^2 A + a^2 \sin^2 A + b^2 \cos^2 A \][/tex]
Combine the [tex]$a^2$[/tex] terms and the [tex]$b^2$[/tex] terms:
[tex]\[ a^2 (\cos^2 A + \sin^2 A) + b^2 (\sin^2 A + \cos^2 A) \][/tex]
Step 4: Use trigonometric identities.
Recall the fundamental trigonometric identities:
[tex]\[ \sin^2 A + \cos^2 A = 1 \][/tex]
Substitute these identities in the equation:
[tex]\[ a^2 (1) + b^2 (1) = a^2 + b^2 \][/tex]
Thus, we have proven that the left-hand side (LHS) is equal to the right-hand side (RHS):
[tex]\[ (a \cos A + b \sin A )^2+( a \sin A - b \cos A )^2 = a^2 + b^2 \][/tex]
Hence, the identity is proven:
[tex]\[ (a \cos A + b \sin A )^2+( a \sin A - b \cos A )^2 = a^2 + b^2 \][/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Thank you for visiting IDNLearn.com. We’re here to provide dependable answers, so visit us again soon.