IDNLearn.com: Where curiosity meets clarity and questions find their answers. Join our interactive Q&A community and get reliable, detailed answers from experienced professionals across a variety of topics.
Sagot :
Sure, let's prove the given trigonometric identity step-by-step.
We need to prove:
[tex]$(a \cos A + b \sin A )^2+( a \sin A - b \cos A )^2= a ^2+b^2.$[/tex]
Step 1: Expand the left-hand side (LHS).
First, we begin by expanding both squared terms in the LHS:
[tex]\[ (a \cos A + b \sin A )^2 = (a \cos A)^2 + (b \sin A)^2 + 2(a \cos A)(b \sin A) \][/tex]
[tex]\[ = a^2 \cos^2 A + b^2 \sin^2 A + 2ab \cos A \sin A \][/tex]
Next, we expand the second term:
[tex]\[ (a \sin A - b \cos A )^2 = (a \sin A)^2 + (-b \cos A)^2 + 2(a \sin A)(-b \cos A) \][/tex]
[tex]\[ = a^2 \sin^2 A + b^2 \cos^2 A - 2ab \sin A \cos A \][/tex]
Step 2: Combine the expanded terms.
Now, we combine the expanded terms:
[tex]\[ (a \cos A + b \sin A)^2 + (a \sin A - b \cos A)^2 = (a^2 \cos^2 A + b^2 \sin^2 A + 2ab \cos A \sin A) + (a^2 \sin^2 A + b^2 \cos^2 A - 2ab \sin A \cos A) \][/tex]
Step 3: Simplify the expression.
Collecting like terms, we get:
[tex]\[ a^2 \cos^2 A + b^2 \sin^2 A + 2ab \cos A \sin A + a^2 \sin^2 A + b^2 \cos^2 A - 2ab \sin A \cos A \][/tex]
Notice that the [tex]$+2ab \cos A \sin A$[/tex] and [tex]$-2ab \sin A \cos A$[/tex] terms cancel each other out:
[tex]\[ a^2 \cos^2 A + b^2 \sin^2 A + a^2 \sin^2 A + b^2 \cos^2 A \][/tex]
Combine the [tex]$a^2$[/tex] terms and the [tex]$b^2$[/tex] terms:
[tex]\[ a^2 (\cos^2 A + \sin^2 A) + b^2 (\sin^2 A + \cos^2 A) \][/tex]
Step 4: Use trigonometric identities.
Recall the fundamental trigonometric identities:
[tex]\[ \sin^2 A + \cos^2 A = 1 \][/tex]
Substitute these identities in the equation:
[tex]\[ a^2 (1) + b^2 (1) = a^2 + b^2 \][/tex]
Thus, we have proven that the left-hand side (LHS) is equal to the right-hand side (RHS):
[tex]\[ (a \cos A + b \sin A )^2+( a \sin A - b \cos A )^2 = a^2 + b^2 \][/tex]
Hence, the identity is proven:
[tex]\[ (a \cos A + b \sin A )^2+( a \sin A - b \cos A )^2 = a^2 + b^2 \][/tex]
We need to prove:
[tex]$(a \cos A + b \sin A )^2+( a \sin A - b \cos A )^2= a ^2+b^2.$[/tex]
Step 1: Expand the left-hand side (LHS).
First, we begin by expanding both squared terms in the LHS:
[tex]\[ (a \cos A + b \sin A )^2 = (a \cos A)^2 + (b \sin A)^2 + 2(a \cos A)(b \sin A) \][/tex]
[tex]\[ = a^2 \cos^2 A + b^2 \sin^2 A + 2ab \cos A \sin A \][/tex]
Next, we expand the second term:
[tex]\[ (a \sin A - b \cos A )^2 = (a \sin A)^2 + (-b \cos A)^2 + 2(a \sin A)(-b \cos A) \][/tex]
[tex]\[ = a^2 \sin^2 A + b^2 \cos^2 A - 2ab \sin A \cos A \][/tex]
Step 2: Combine the expanded terms.
Now, we combine the expanded terms:
[tex]\[ (a \cos A + b \sin A)^2 + (a \sin A - b \cos A)^2 = (a^2 \cos^2 A + b^2 \sin^2 A + 2ab \cos A \sin A) + (a^2 \sin^2 A + b^2 \cos^2 A - 2ab \sin A \cos A) \][/tex]
Step 3: Simplify the expression.
Collecting like terms, we get:
[tex]\[ a^2 \cos^2 A + b^2 \sin^2 A + 2ab \cos A \sin A + a^2 \sin^2 A + b^2 \cos^2 A - 2ab \sin A \cos A \][/tex]
Notice that the [tex]$+2ab \cos A \sin A$[/tex] and [tex]$-2ab \sin A \cos A$[/tex] terms cancel each other out:
[tex]\[ a^2 \cos^2 A + b^2 \sin^2 A + a^2 \sin^2 A + b^2 \cos^2 A \][/tex]
Combine the [tex]$a^2$[/tex] terms and the [tex]$b^2$[/tex] terms:
[tex]\[ a^2 (\cos^2 A + \sin^2 A) + b^2 (\sin^2 A + \cos^2 A) \][/tex]
Step 4: Use trigonometric identities.
Recall the fundamental trigonometric identities:
[tex]\[ \sin^2 A + \cos^2 A = 1 \][/tex]
Substitute these identities in the equation:
[tex]\[ a^2 (1) + b^2 (1) = a^2 + b^2 \][/tex]
Thus, we have proven that the left-hand side (LHS) is equal to the right-hand side (RHS):
[tex]\[ (a \cos A + b \sin A )^2+( a \sin A - b \cos A )^2 = a^2 + b^2 \][/tex]
Hence, the identity is proven:
[tex]\[ (a \cos A + b \sin A )^2+( a \sin A - b \cos A )^2 = a^2 + b^2 \][/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Your questions find clarity at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.