Get expert advice and community support on IDNLearn.com. Ask anything and receive well-informed answers from our community of experienced professionals.
Sagot :
Certainly! Let's solve this step-by-step:
1. Given Values:
- Amount of heat transferred ([tex]\( q \)[/tex]): [tex]\( 1.9 \)[/tex] kJ
- Mass of aluminum ([tex]\( m \)[/tex]): [tex]\( 96 \)[/tex] g
- Initial temperature of aluminum ([tex]\( T_{\text{initial}} \)[/tex]): [tex]\( 113 \)[/tex]°C
- Specific heat capacity of aluminum ([tex]\( c \)[/tex]): [tex]\( 0.897 \)[/tex] J/(g·°C)
2. Convert heat transferred from kilojoules to joules:
[tex]\[ q = 1.9 \, \text{kJ} \times 1000 \, \left(\frac{\text{J}}{\text{kJ}}\right) = 1900 \, \text{J} \][/tex]
3. Use the formula to calculate the change in temperature ([tex]\( \Delta T \)[/tex]):
[tex]\[ q = m \times c \times \Delta T \][/tex]
We need to solve for [tex]\( \Delta T \)[/tex]:
[tex]\[ \Delta T = \frac{q}{m \times c} \][/tex]
4. Substitute the known values into the formula:
[tex]\[ \Delta T = \frac{1900 \, \text{J}}{96 \, \text{g} \times 0.897 \, \frac{\text{J}}{\text{g} \cdot \, °\text{C}}} \][/tex]
[tex]\[ \Delta T \approx 22.064 \, °\text{C} \][/tex]
5. Calculate the new temperature of the aluminum:
[tex]\[ T_{\text{new}} = T_{\text{initial}} + \Delta T \][/tex]
[tex]\[ T_{\text{new}} = 113 \,°\text{C} + 22.064 \,°\text{C} \][/tex]
[tex]\[ T_{\text{new}} \approx 135.064 \, °\text{C} \][/tex]
So, the new temperature of the aluminum after [tex]\( 1.9 \)[/tex] kJ of heat is transferred to it would be approximately [tex]\( 135.064 \)[/tex]°C.
1. Given Values:
- Amount of heat transferred ([tex]\( q \)[/tex]): [tex]\( 1.9 \)[/tex] kJ
- Mass of aluminum ([tex]\( m \)[/tex]): [tex]\( 96 \)[/tex] g
- Initial temperature of aluminum ([tex]\( T_{\text{initial}} \)[/tex]): [tex]\( 113 \)[/tex]°C
- Specific heat capacity of aluminum ([tex]\( c \)[/tex]): [tex]\( 0.897 \)[/tex] J/(g·°C)
2. Convert heat transferred from kilojoules to joules:
[tex]\[ q = 1.9 \, \text{kJ} \times 1000 \, \left(\frac{\text{J}}{\text{kJ}}\right) = 1900 \, \text{J} \][/tex]
3. Use the formula to calculate the change in temperature ([tex]\( \Delta T \)[/tex]):
[tex]\[ q = m \times c \times \Delta T \][/tex]
We need to solve for [tex]\( \Delta T \)[/tex]:
[tex]\[ \Delta T = \frac{q}{m \times c} \][/tex]
4. Substitute the known values into the formula:
[tex]\[ \Delta T = \frac{1900 \, \text{J}}{96 \, \text{g} \times 0.897 \, \frac{\text{J}}{\text{g} \cdot \, °\text{C}}} \][/tex]
[tex]\[ \Delta T \approx 22.064 \, °\text{C} \][/tex]
5. Calculate the new temperature of the aluminum:
[tex]\[ T_{\text{new}} = T_{\text{initial}} + \Delta T \][/tex]
[tex]\[ T_{\text{new}} = 113 \,°\text{C} + 22.064 \,°\text{C} \][/tex]
[tex]\[ T_{\text{new}} \approx 135.064 \, °\text{C} \][/tex]
So, the new temperature of the aluminum after [tex]\( 1.9 \)[/tex] kJ of heat is transferred to it would be approximately [tex]\( 135.064 \)[/tex]°C.
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Thank you for choosing IDNLearn.com. We’re committed to providing accurate answers, so visit us again soon.