From health tips to tech hacks, find it all on IDNLearn.com. Our experts provide accurate and detailed responses to help you navigate any topic or issue with confidence.
Sagot :
Certainly! Let's break down the problem step-by-step to calculate the required derivatives.
### 1.1 Given [tex]\( f(x) = 1 - 5x^2 \)[/tex], determine [tex]\( f'(x) \)[/tex] from first principles.
To find the derivative of a function [tex]\( f(x) \)[/tex] from first principles, we use the definition of the derivative:
[tex]\[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \][/tex]
For [tex]\( f(x) = 1 - 5x^2 \)[/tex]:
1. Calculate [tex]\( f(x + h) \)[/tex]:
[tex]\[ f(x + h) = 1 - 5(x+h)^2 \][/tex]
[tex]\[ = 1 - 5(x^2 + 2xh + h^2) \][/tex]
[tex]\[ = 1 - 5x^2 - 10xh - 5h^2 \][/tex]
2. Calculate [tex]\( f(x + h) - f(x) \)[/tex]:
[tex]\[ f(x + h) - f(x) = (1 - 5x^2 - 10xh - 5h^2) - (1 - 5x^2) \][/tex]
[tex]\[ = -10xh - 5h^2 \][/tex]
3. Substitute into the definition of the derivative:
[tex]\[ f'(x) = \lim_{h \to 0} \frac{-10xh - 5h^2}{h} \][/tex]
[tex]\[ = \lim_{h \to 0} (-10x - 5h) \][/tex]
When [tex]\( h \)[/tex] approaches 0, the term [tex]\( -5h \)[/tex] approaches 0, so:
[tex]\[ f'(x) = -10x \][/tex]
Therefore, [tex]\( f'(x) = -10x \)[/tex].
### 1.2 Differentiate with respect to [tex]\( x \)[/tex]:
#### 1.2.1 [tex]\( y = (2x - 1)^2 \)[/tex]
To differentiate [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex], we use the chain rule:
[tex]\[ y = (2x - 1)^2 \][/tex]
Differentiate the outer function first, then the inner function:
[tex]\[ \frac{dy}{dx} = 2(2x - 1) \cdot \frac{d}{dx}(2x - 1) \][/tex]
[tex]\[ = 2(2x - 1) \cdot 2 \][/tex]
[tex]\[ = 4(2x - 1) \][/tex]
[tex]\[ = 8x - 4 \][/tex]
Therefore, [tex]\( \frac{dy}{dx} = 8x - 4 \)[/tex].
#### 1.2.2 [tex]\( y = \sqrt{x} (1 - \sqrt[3]{x}) \)[/tex]
To differentiate [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex], apply the product rule combined with the chain rule. Let [tex]\( u = \sqrt{x} \)[/tex] and [tex]\( v = 1 - \sqrt[3]{x} \)[/tex].
[tex]\[ y = u \cdot v \][/tex]
First, find [tex]\( \frac{du}{dx} \)[/tex] and [tex]\( \frac{dv}{dx} \)[/tex]:
[tex]\[ u = x^{1/2} \Rightarrow \frac{du}{dx} = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \][/tex]
[tex]\[ v = 1 - x^{1/3} \Rightarrow \frac{dv}{dx} = -\frac{1}{3} x^{-2/3} \][/tex]
Now apply the product rule:
[tex]\[ \frac{dy}{dx} = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx} \][/tex]
[tex]\[ \frac{dy}{dx} = \sqrt{x} \left(-\frac{1}{3} x^{-2/3}\right) + (1 - x^{1/3}) \left(\frac{1}{2\sqrt{x}}\right) \][/tex]
Simplify each term:
[tex]\[ \frac{dy}{dx} = -\frac{1}{3} x^{1/2 - 2/3} + \frac{1 - x^{1/3}}{2x^{1/2}} \][/tex]
[tex]\[ = -\frac{1}{3} x^{-1/6} + \frac{1 - x^{1/3}}{2\sqrt{x}} \][/tex]
Therefore:
[tex]\[ \frac{dy}{dx} = -0.333333333333333/x^{0.166666666666667} + \frac{1 - x^{0.333333333333333}}{2\sqrt{x}} \][/tex]
#### 1.2.3 [tex]\( D_x \left[ \frac{8x^3 - 27}{2x - 3} \right] \)[/tex]
To differentiate [tex]\( \frac{8x^3 - 27}{2x - 3} \)[/tex] with respect to [tex]\( x \)[/tex], we use the quotient rule:
Let [tex]\( u = 8x^3 - 27 \)[/tex] and [tex]\( v = 2x - 3 \)[/tex].
Quotient rule states:
[tex]\[ \frac{du}{dx} = 24x^2 \][/tex]
[tex]\[ \frac{dv}{dx} = 2 \][/tex]
[tex]\[ \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \][/tex]
Substitute [tex]\( u \)[/tex], [tex]\( v \)[/tex], [tex]\( \frac{du}{dx} \)[/tex], and [tex]\( \frac{dv}{dx} \)[/tex]:
[tex]\[ \frac{d}{dx} \left( \frac{8x^3 - 27}{2x - 3} \right) = \frac{(2x - 3) \cdot 24x^2 - (8x^3 - 27) \cdot 2}{(2x - 3)^2} \][/tex]
Simplify:
[tex]\[ = \frac{48x^2 (2x - 3) - 16x^3 + 54}{(2x - 3)^2} \][/tex]
[tex]\[ = \frac{96x^3 - 144x^2 - 16x^3 + 54}{(2x - 3)^2} \][/tex]
[tex]\[ = \frac{80x^3 - 144x^2 + 54}{(2x - 3)^2} \][/tex]
This comprehensively solves the differentiation tasks.
### 1.1 Given [tex]\( f(x) = 1 - 5x^2 \)[/tex], determine [tex]\( f'(x) \)[/tex] from first principles.
To find the derivative of a function [tex]\( f(x) \)[/tex] from first principles, we use the definition of the derivative:
[tex]\[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \][/tex]
For [tex]\( f(x) = 1 - 5x^2 \)[/tex]:
1. Calculate [tex]\( f(x + h) \)[/tex]:
[tex]\[ f(x + h) = 1 - 5(x+h)^2 \][/tex]
[tex]\[ = 1 - 5(x^2 + 2xh + h^2) \][/tex]
[tex]\[ = 1 - 5x^2 - 10xh - 5h^2 \][/tex]
2. Calculate [tex]\( f(x + h) - f(x) \)[/tex]:
[tex]\[ f(x + h) - f(x) = (1 - 5x^2 - 10xh - 5h^2) - (1 - 5x^2) \][/tex]
[tex]\[ = -10xh - 5h^2 \][/tex]
3. Substitute into the definition of the derivative:
[tex]\[ f'(x) = \lim_{h \to 0} \frac{-10xh - 5h^2}{h} \][/tex]
[tex]\[ = \lim_{h \to 0} (-10x - 5h) \][/tex]
When [tex]\( h \)[/tex] approaches 0, the term [tex]\( -5h \)[/tex] approaches 0, so:
[tex]\[ f'(x) = -10x \][/tex]
Therefore, [tex]\( f'(x) = -10x \)[/tex].
### 1.2 Differentiate with respect to [tex]\( x \)[/tex]:
#### 1.2.1 [tex]\( y = (2x - 1)^2 \)[/tex]
To differentiate [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex], we use the chain rule:
[tex]\[ y = (2x - 1)^2 \][/tex]
Differentiate the outer function first, then the inner function:
[tex]\[ \frac{dy}{dx} = 2(2x - 1) \cdot \frac{d}{dx}(2x - 1) \][/tex]
[tex]\[ = 2(2x - 1) \cdot 2 \][/tex]
[tex]\[ = 4(2x - 1) \][/tex]
[tex]\[ = 8x - 4 \][/tex]
Therefore, [tex]\( \frac{dy}{dx} = 8x - 4 \)[/tex].
#### 1.2.2 [tex]\( y = \sqrt{x} (1 - \sqrt[3]{x}) \)[/tex]
To differentiate [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex], apply the product rule combined with the chain rule. Let [tex]\( u = \sqrt{x} \)[/tex] and [tex]\( v = 1 - \sqrt[3]{x} \)[/tex].
[tex]\[ y = u \cdot v \][/tex]
First, find [tex]\( \frac{du}{dx} \)[/tex] and [tex]\( \frac{dv}{dx} \)[/tex]:
[tex]\[ u = x^{1/2} \Rightarrow \frac{du}{dx} = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \][/tex]
[tex]\[ v = 1 - x^{1/3} \Rightarrow \frac{dv}{dx} = -\frac{1}{3} x^{-2/3} \][/tex]
Now apply the product rule:
[tex]\[ \frac{dy}{dx} = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx} \][/tex]
[tex]\[ \frac{dy}{dx} = \sqrt{x} \left(-\frac{1}{3} x^{-2/3}\right) + (1 - x^{1/3}) \left(\frac{1}{2\sqrt{x}}\right) \][/tex]
Simplify each term:
[tex]\[ \frac{dy}{dx} = -\frac{1}{3} x^{1/2 - 2/3} + \frac{1 - x^{1/3}}{2x^{1/2}} \][/tex]
[tex]\[ = -\frac{1}{3} x^{-1/6} + \frac{1 - x^{1/3}}{2\sqrt{x}} \][/tex]
Therefore:
[tex]\[ \frac{dy}{dx} = -0.333333333333333/x^{0.166666666666667} + \frac{1 - x^{0.333333333333333}}{2\sqrt{x}} \][/tex]
#### 1.2.3 [tex]\( D_x \left[ \frac{8x^3 - 27}{2x - 3} \right] \)[/tex]
To differentiate [tex]\( \frac{8x^3 - 27}{2x - 3} \)[/tex] with respect to [tex]\( x \)[/tex], we use the quotient rule:
Let [tex]\( u = 8x^3 - 27 \)[/tex] and [tex]\( v = 2x - 3 \)[/tex].
Quotient rule states:
[tex]\[ \frac{du}{dx} = 24x^2 \][/tex]
[tex]\[ \frac{dv}{dx} = 2 \][/tex]
[tex]\[ \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \][/tex]
Substitute [tex]\( u \)[/tex], [tex]\( v \)[/tex], [tex]\( \frac{du}{dx} \)[/tex], and [tex]\( \frac{dv}{dx} \)[/tex]:
[tex]\[ \frac{d}{dx} \left( \frac{8x^3 - 27}{2x - 3} \right) = \frac{(2x - 3) \cdot 24x^2 - (8x^3 - 27) \cdot 2}{(2x - 3)^2} \][/tex]
Simplify:
[tex]\[ = \frac{48x^2 (2x - 3) - 16x^3 + 54}{(2x - 3)^2} \][/tex]
[tex]\[ = \frac{96x^3 - 144x^2 - 16x^3 + 54}{(2x - 3)^2} \][/tex]
[tex]\[ = \frac{80x^3 - 144x^2 + 54}{(2x - 3)^2} \][/tex]
This comprehensively solves the differentiation tasks.
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your search for answers ends at IDNLearn.com. Thanks for visiting, and we look forward to helping you again soon.