Find the best solutions to your problems with the help of IDNLearn.com's experts. Join our Q&A platform to get accurate and thorough answers to all your pressing questions.
Sagot :
To determine the distance between two electrical charges based on their electric potential energy, we can use the formula for electric potential energy between two point charges:
[tex]\[ U = \frac{k \cdot q_1 \cdot q_2}{r} \][/tex]
Where:
- [tex]\( U \)[/tex] is the electric potential energy,
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\(8.99 \times 10^9 \, \text{N·m}^2/\text{C}^2\)[/tex]),
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the charges,
- [tex]\( r \)[/tex] is the distance between the charges.
Given the values:
- [tex]\( q_1 = -4.33 \times 10^{-6} \text{ C} \)[/tex]
- [tex]\( q_2 = -7.81 \times 10^{-4} \text{ C} \)[/tex]
- [tex]\( U = 44.9 \text{ J} \)[/tex]
We need to rearrange the formula to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \frac{k \cdot q_1 \cdot q_2}{U} \][/tex]
Let's plug in the values and calculate [tex]\( r \)[/tex]:
[tex]\[ r = \frac{8.99 \times 10^9 \cdot (-4.33 \times 10^{-6}) \cdot (-7.81 \times 10^{-4})}{44.9} \][/tex]
First, calculate the numerator:
[tex]\[ \text{Numerator} = 8.99 \times 10^9 \times (-4.33 \times 10^{-6}) \times (-7.81 \times 10^{-4}) \][/tex]
[tex]\[ = 8.99 \times 10^9 \times 4.33 \times 10^{-6} \times 7.81 \times 10^{-4} \][/tex]
Since we are considering the magnitudes (both charges are negative but their product will be positive):
[tex]\[ = 8.99 \times 4.33 \times 7.81 \times 10^{9 - 6 - 4} \][/tex]
[tex]\[ = 8.99 \times 4.33 \times 7.81 \times 10^{-1} \][/tex]
[tex]\[ = 306.82657 \times 10^{-1} \][/tex]
[tex]\[ = 30.682657 \][/tex]
Now, divide by the electric potential energy [tex]\( U = 44.9 \)[/tex]:
[tex]\[ r = \frac{30.682657}{44.9} \][/tex]
[tex]\[ = 0.683456 \][/tex]
So, the distance [tex]\( r \)[/tex] between the charges is approximately:
[tex]\[ 0.6771 \, \text{meters} \][/tex]
Thus, the charges are approximately [tex]\( 0.6771 \, \text{meters} \)[/tex] apart.
[tex]\[ U = \frac{k \cdot q_1 \cdot q_2}{r} \][/tex]
Where:
- [tex]\( U \)[/tex] is the electric potential energy,
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\(8.99 \times 10^9 \, \text{N·m}^2/\text{C}^2\)[/tex]),
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the charges,
- [tex]\( r \)[/tex] is the distance between the charges.
Given the values:
- [tex]\( q_1 = -4.33 \times 10^{-6} \text{ C} \)[/tex]
- [tex]\( q_2 = -7.81 \times 10^{-4} \text{ C} \)[/tex]
- [tex]\( U = 44.9 \text{ J} \)[/tex]
We need to rearrange the formula to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \frac{k \cdot q_1 \cdot q_2}{U} \][/tex]
Let's plug in the values and calculate [tex]\( r \)[/tex]:
[tex]\[ r = \frac{8.99 \times 10^9 \cdot (-4.33 \times 10^{-6}) \cdot (-7.81 \times 10^{-4})}{44.9} \][/tex]
First, calculate the numerator:
[tex]\[ \text{Numerator} = 8.99 \times 10^9 \times (-4.33 \times 10^{-6}) \times (-7.81 \times 10^{-4}) \][/tex]
[tex]\[ = 8.99 \times 10^9 \times 4.33 \times 10^{-6} \times 7.81 \times 10^{-4} \][/tex]
Since we are considering the magnitudes (both charges are negative but their product will be positive):
[tex]\[ = 8.99 \times 4.33 \times 7.81 \times 10^{9 - 6 - 4} \][/tex]
[tex]\[ = 8.99 \times 4.33 \times 7.81 \times 10^{-1} \][/tex]
[tex]\[ = 306.82657 \times 10^{-1} \][/tex]
[tex]\[ = 30.682657 \][/tex]
Now, divide by the electric potential energy [tex]\( U = 44.9 \)[/tex]:
[tex]\[ r = \frac{30.682657}{44.9} \][/tex]
[tex]\[ = 0.683456 \][/tex]
So, the distance [tex]\( r \)[/tex] between the charges is approximately:
[tex]\[ 0.6771 \, \text{meters} \][/tex]
Thus, the charges are approximately [tex]\( 0.6771 \, \text{meters} \)[/tex] apart.
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. For trustworthy answers, rely on IDNLearn.com. Thanks for visiting, and we look forward to assisting you again.