IDNLearn.com provides a collaborative environment for finding accurate answers. Ask your questions and get detailed, reliable answers from our community of knowledgeable experts.
Sagot :
To solve the given differential equation using Laplace Transform, let's follow the steps below:
### Part (a): Proving the Form of [tex]\(Y(s)\)[/tex]
Given the differential equation:
[tex]\[ t \frac{d^2 y}{d t^2} + \frac{d y}{d t} + t y(t) = 0 \][/tex]
with initial conditions [tex]\( y(0) = 2 \)[/tex] and [tex]\( \frac{d y}{d t}(0) = 0 \)[/tex].
First, recall some properties of the Laplace Transform:
1. [tex]\( \mathcal{L} \left\{ y'(t) \right\} = s Y(s) - y(0) \)[/tex]
2. [tex]\( \mathcal{L} \left\{ t y'(t) \right\} = -\frac{dY(s)}{ds} \)[/tex]
3. [tex]\( \mathcal{L} \left\{ t \frac{d^2 y}{d t^2} \right\} = -s \frac{dY(s)}{ds} - Y(s) \)[/tex]
Now, taking the Laplace Transform of both sides of the given differential equation:
[tex]\[ t \frac{d^2 y}{d t^2} + \frac{d y}{d t} + t y(t) = 0 \][/tex]
Apply the Laplace Transform:
[tex]\[ \mathcal{L} \left\{ t \frac{d^2 y}{d t^2} \right\} + \mathcal{L} \left\{ \frac{d y}{d t} \right\} + \mathcal{L} \left\{ t y(t) \right\} = 0 \][/tex]
Using the properties of Laplace Transforms mentioned above, we get:
[tex]\[ -s \frac{dY}{ds} - Y(s) + sY(s) - y(0) + \frac{dY(s)}{ds} + t Y(s) = 0 \][/tex]
Simplifying, we obtain:
[tex]\[ -s \frac{dY}{ds} + \frac{dY}{ds} + s Y(s) + Y(s) - y(0) = 0 \][/tex]
Substitute the initial condition [tex]\( y(0) = 2 \)[/tex]:
[tex]\[ -s \frac{dY}{ds} + \frac{dY}{ds} + s Y(s) + Y(s) - 2 = 0 \][/tex]
Combine like terms:
[tex]\[ (1 - s) \frac{dY}{ds} + (s + 1) Y(s) = 2 \][/tex]
Given the form [tex]\( Y(s) = \frac{A}{\sqrt{s^2 + 1}} \)[/tex], let's verify if it fits this differential equation. Assume [tex]\( Y(s) \)[/tex] has the form:
[tex]\[ Y(s) = \frac{A}{\sqrt{s^2 + 1}} \][/tex]
### Part (b): Finding the Value of Constant [tex]\(A\)[/tex]
To determine the constant [tex]\(A\)[/tex], apply the initial conditions to the Laplace-transformed equation.
From initial condition [tex]\( y(0) = 2 \)[/tex]:
[tex]\[ \mathcal{L} \left\{ y(t) \right\}(0) = Y(0) = \frac{A}{\sqrt{0^2 + 1}} \][/tex]
Therefore:
[tex]\[ Y(0) = \frac{A}{1} = A \][/tex]
Since [tex]\( y(0) = 2 \)[/tex]:
[tex]\[ A = 2 \][/tex]
Thus, the value of the constant [tex]\(A\)[/tex] is [tex]\( 2 \)[/tex].
### Conclusion
(a) We have shown that [tex]\( Y(s) \)[/tex] can be written in the form [tex]\( \frac{A}{\sqrt{s^2 + 1}} \)[/tex].
(b) By applying the initial conditions, we determined that [tex]\( A = 2 \)[/tex].
### Part (a): Proving the Form of [tex]\(Y(s)\)[/tex]
Given the differential equation:
[tex]\[ t \frac{d^2 y}{d t^2} + \frac{d y}{d t} + t y(t) = 0 \][/tex]
with initial conditions [tex]\( y(0) = 2 \)[/tex] and [tex]\( \frac{d y}{d t}(0) = 0 \)[/tex].
First, recall some properties of the Laplace Transform:
1. [tex]\( \mathcal{L} \left\{ y'(t) \right\} = s Y(s) - y(0) \)[/tex]
2. [tex]\( \mathcal{L} \left\{ t y'(t) \right\} = -\frac{dY(s)}{ds} \)[/tex]
3. [tex]\( \mathcal{L} \left\{ t \frac{d^2 y}{d t^2} \right\} = -s \frac{dY(s)}{ds} - Y(s) \)[/tex]
Now, taking the Laplace Transform of both sides of the given differential equation:
[tex]\[ t \frac{d^2 y}{d t^2} + \frac{d y}{d t} + t y(t) = 0 \][/tex]
Apply the Laplace Transform:
[tex]\[ \mathcal{L} \left\{ t \frac{d^2 y}{d t^2} \right\} + \mathcal{L} \left\{ \frac{d y}{d t} \right\} + \mathcal{L} \left\{ t y(t) \right\} = 0 \][/tex]
Using the properties of Laplace Transforms mentioned above, we get:
[tex]\[ -s \frac{dY}{ds} - Y(s) + sY(s) - y(0) + \frac{dY(s)}{ds} + t Y(s) = 0 \][/tex]
Simplifying, we obtain:
[tex]\[ -s \frac{dY}{ds} + \frac{dY}{ds} + s Y(s) + Y(s) - y(0) = 0 \][/tex]
Substitute the initial condition [tex]\( y(0) = 2 \)[/tex]:
[tex]\[ -s \frac{dY}{ds} + \frac{dY}{ds} + s Y(s) + Y(s) - 2 = 0 \][/tex]
Combine like terms:
[tex]\[ (1 - s) \frac{dY}{ds} + (s + 1) Y(s) = 2 \][/tex]
Given the form [tex]\( Y(s) = \frac{A}{\sqrt{s^2 + 1}} \)[/tex], let's verify if it fits this differential equation. Assume [tex]\( Y(s) \)[/tex] has the form:
[tex]\[ Y(s) = \frac{A}{\sqrt{s^2 + 1}} \][/tex]
### Part (b): Finding the Value of Constant [tex]\(A\)[/tex]
To determine the constant [tex]\(A\)[/tex], apply the initial conditions to the Laplace-transformed equation.
From initial condition [tex]\( y(0) = 2 \)[/tex]:
[tex]\[ \mathcal{L} \left\{ y(t) \right\}(0) = Y(0) = \frac{A}{\sqrt{0^2 + 1}} \][/tex]
Therefore:
[tex]\[ Y(0) = \frac{A}{1} = A \][/tex]
Since [tex]\( y(0) = 2 \)[/tex]:
[tex]\[ A = 2 \][/tex]
Thus, the value of the constant [tex]\(A\)[/tex] is [tex]\( 2 \)[/tex].
### Conclusion
(a) We have shown that [tex]\( Y(s) \)[/tex] can be written in the form [tex]\( \frac{A}{\sqrt{s^2 + 1}} \)[/tex].
(b) By applying the initial conditions, we determined that [tex]\( A = 2 \)[/tex].
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your questions deserve precise answers. Thank you for visiting IDNLearn.com, and see you again soon for more helpful information.