Join IDNLearn.com and start exploring the answers to your most pressing questions. Discover comprehensive answers to your questions from our community of experienced professionals.
Sagot :
Let's solve this problem by following these step-by-step:
### Step 1: Calculate sample proportions
We need to determine the sample proportions from the given data:
- For the first container:
- Number of red beads sampled = 10
- Total number of beads sampled = 50
- Sample proportion ([tex]\( p1_{hat} \)[/tex]) = [tex]\( \frac{10}{50} = 0.2 \)[/tex]
- For the second container:
- Number of red beads sampled = 16
- Total number of beads sampled = 50
- Sample proportion ([tex]\( p2_{hat} \)[/tex]) = [tex]\( \frac{16}{50} = 0.32 \)[/tex]
### Step 2: Determine the combined proportion
The combined proportion ([tex]\( p_{combined} \)[/tex]) of red beads is calculated by combining the red beads and total beads from both samples:
[tex]\[ p_{combined} = \frac{10 + 16}{50 + 50} = \frac{26}{100} = 0.26 \][/tex]
### Step 3: Calculate the standard error
The standard error (SE) of the difference between the sample proportions is given by:
[tex]\[ SE = \sqrt{ p_{combined} (1 - p_{combined}) \left(\frac{1}{n1} + \frac{1}{n2}\right) } \][/tex]
where:
- [tex]\( p_{combined} = 0.26 \)[/tex]
- [tex]\( n1 = 50 \)[/tex]
- [tex]\( n2 = 50 \)[/tex]
Let's substitute the values:
[tex]\[ SE = \sqrt{ 0.26 \times (1 - 0.26) \left(\frac{1}{50} + \frac{1}{50}\right) } \][/tex]
[tex]\[ SE = \sqrt{ 0.26 \times 0.74 \left(\frac{2}{50}\right) } \][/tex]
[tex]\[ SE = \sqrt{ 0.26 \times 0.74 \times 0.04 } \][/tex]
[tex]\[ SE \approx 0.0877 \][/tex]
### Step 4: Calculate the z-score
The z-score is calculated as:
[tex]\[ z = \frac{p1_{hat} - p2_{hat}}{SE} \][/tex]
Substituting the values:
[tex]\[ z = \frac{0.2 - 0.32}{0.0877} \][/tex]
[tex]\[ z \approx -1.368 \][/tex]
### Step 5: Calculate the p-value
The p-value is the probability that the observed difference between the sample proportions is at least as extreme as the difference observed, under the null hypothesis. Given the z-score calculated, the p-value (considering a two-tailed test) can be found using a z-table:
[tex]\[ \text{p-value} = 2 \left(1 - \Phi(|z|)\right) \][/tex]
Where [tex]\(\Phi(z)\)[/tex] represents the cumulative distribution function of the normal distribution.
For [tex]\( z \approx -1.368 \)[/tex]:
[tex]\[ \text{p-value} \approx 2 ( 1 - 0.0857) = 2 \times 0.9143 \approx 0.171 \][/tex]
### Conclusion
The correct standardized test statistic and p-value for testing the hypotheses [tex]\( H_0: p1 - p2 = 0 \)[/tex] and [tex]\( H_A: p1 \neq p2 \)[/tex] are:
[tex]\[ z = \frac{0.20 - 0.32}{\sqrt{\frac{(0.26)(0.74)}{100}}}, \][/tex]
[tex]\[ \text{p-value} = 0.171 \][/tex]
Hence, the correct option is:
[tex]\[ z = \frac{0.20 - 0.32}{\sqrt{\frac{(0.20)(0.80)}{50} + \frac{(0.32)(0.68)}{50}}}, \text{ p-value } = 0.171 \][/tex]
### Step 1: Calculate sample proportions
We need to determine the sample proportions from the given data:
- For the first container:
- Number of red beads sampled = 10
- Total number of beads sampled = 50
- Sample proportion ([tex]\( p1_{hat} \)[/tex]) = [tex]\( \frac{10}{50} = 0.2 \)[/tex]
- For the second container:
- Number of red beads sampled = 16
- Total number of beads sampled = 50
- Sample proportion ([tex]\( p2_{hat} \)[/tex]) = [tex]\( \frac{16}{50} = 0.32 \)[/tex]
### Step 2: Determine the combined proportion
The combined proportion ([tex]\( p_{combined} \)[/tex]) of red beads is calculated by combining the red beads and total beads from both samples:
[tex]\[ p_{combined} = \frac{10 + 16}{50 + 50} = \frac{26}{100} = 0.26 \][/tex]
### Step 3: Calculate the standard error
The standard error (SE) of the difference between the sample proportions is given by:
[tex]\[ SE = \sqrt{ p_{combined} (1 - p_{combined}) \left(\frac{1}{n1} + \frac{1}{n2}\right) } \][/tex]
where:
- [tex]\( p_{combined} = 0.26 \)[/tex]
- [tex]\( n1 = 50 \)[/tex]
- [tex]\( n2 = 50 \)[/tex]
Let's substitute the values:
[tex]\[ SE = \sqrt{ 0.26 \times (1 - 0.26) \left(\frac{1}{50} + \frac{1}{50}\right) } \][/tex]
[tex]\[ SE = \sqrt{ 0.26 \times 0.74 \left(\frac{2}{50}\right) } \][/tex]
[tex]\[ SE = \sqrt{ 0.26 \times 0.74 \times 0.04 } \][/tex]
[tex]\[ SE \approx 0.0877 \][/tex]
### Step 4: Calculate the z-score
The z-score is calculated as:
[tex]\[ z = \frac{p1_{hat} - p2_{hat}}{SE} \][/tex]
Substituting the values:
[tex]\[ z = \frac{0.2 - 0.32}{0.0877} \][/tex]
[tex]\[ z \approx -1.368 \][/tex]
### Step 5: Calculate the p-value
The p-value is the probability that the observed difference between the sample proportions is at least as extreme as the difference observed, under the null hypothesis. Given the z-score calculated, the p-value (considering a two-tailed test) can be found using a z-table:
[tex]\[ \text{p-value} = 2 \left(1 - \Phi(|z|)\right) \][/tex]
Where [tex]\(\Phi(z)\)[/tex] represents the cumulative distribution function of the normal distribution.
For [tex]\( z \approx -1.368 \)[/tex]:
[tex]\[ \text{p-value} \approx 2 ( 1 - 0.0857) = 2 \times 0.9143 \approx 0.171 \][/tex]
### Conclusion
The correct standardized test statistic and p-value for testing the hypotheses [tex]\( H_0: p1 - p2 = 0 \)[/tex] and [tex]\( H_A: p1 \neq p2 \)[/tex] are:
[tex]\[ z = \frac{0.20 - 0.32}{\sqrt{\frac{(0.26)(0.74)}{100}}}, \][/tex]
[tex]\[ \text{p-value} = 0.171 \][/tex]
Hence, the correct option is:
[tex]\[ z = \frac{0.20 - 0.32}{\sqrt{\frac{(0.20)(0.80)}{50} + \frac{(0.32)(0.68)}{50}}}, \text{ p-value } = 0.171 \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thanks for visiting IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more helpful information.