Get expert insights and community-driven knowledge on IDNLearn.com. Ask your questions and receive accurate, in-depth answers from our knowledgeable community members.
Sagot :
To solve the problem, we'll analyze the function [tex]\( f(x) = -x^3 + 3x^2 - x - 1 \)[/tex].
### Step 1: Finding the Turning Points
To find the turning points, we need to calculate the first derivative of the function and solve for [tex]\( x \)[/tex] where this derivative is zero.
The first derivative of [tex]\( f(x) \)[/tex] is:
[tex]\[ f'(x) = \frac{d}{dx} (-x^3 + 3x^2 - x - 1) \][/tex]
[tex]\[ f'(x) = -3x^2 + 6x - 1 \][/tex]
We set the first derivative equal to zero to find the critical points:
[tex]\[ -3x^2 + 6x - 1 = 0 \][/tex]
Solving this quadratic equation, we find the critical points (turning points):
[tex]\[ x = \frac{6 \pm \sqrt{36 - 4 \cdot (-3) \cdot (-1)}}{2 \cdot (-3)} \][/tex]
[tex]\[ x = \frac{6 \pm \sqrt{36 - 12}}{-6} \][/tex]
[tex]\[ x = \frac{6 \pm \sqrt{24}}{-6} \][/tex]
[tex]\[ x = \frac{6 \pm 2\sqrt{6}}{-6} \][/tex]
[tex]\[ x = 1 - \frac{\sqrt{6}}{3}, \quad x = 1 + \frac{\sqrt{6}}{3} \][/tex]
### Step 2: Determining the Nature of the Turning Points
We evaluate the second derivative to determine the nature of the turning points.
The second derivative of [tex]\( f(x) \)[/tex] is:
[tex]\[ f''(x) = \frac{d}{dx} (-3x^2 + 6x - 1) \][/tex]
[tex]\[ f''(x) = -6x + 6 \][/tex]
We substitute the turning points into [tex]\( f''(x) \)[/tex]:
For [tex]\( x = 1 - \frac{\sqrt{6}}{3} \)[/tex]:
[tex]\[ f''\left(1 - \frac{\sqrt{6}}{3}\right) = -6\left(1 - \frac{\sqrt{6}}{3}\right) + 6 = -6 + 2\sqrt{6} + 6 = 2\sqrt{6} \][/tex]
Since [tex]\( f''\left(1 - \frac{\sqrt{6}}{3}\right) > 0 \)[/tex], this turning point is a local minimum.
For [tex]\( x = 1 + \frac{\sqrt{6}}{3} \)[/tex]:
[tex]\[ f''\left(1 + \frac{\sqrt{6}}{3}\right) = -6\left(1 + \frac{\sqrt{6}}{3}\right) + 6 = -6 - 2\sqrt{6} + 6 = -2\sqrt{6} \][/tex]
Since [tex]\( f''\left(1 + \frac{\sqrt{6}}{3}\right) < 0 \)[/tex], this turning point is a local maximum.
### Step 3: Finding the [tex]\( x \)[/tex]-Intercepts
To find the [tex]\( x \)[/tex]-intercepts, we solve [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ -x^3 + 3x^2 - x - 1 = 0 \][/tex]
Solving this cubic equation, we get the [tex]\( x \)[/tex]-intercepts:
[tex]\[ x = 1, \quad x = 1 - \sqrt{2}, \quad x = 1 + \sqrt{2} \][/tex]
### Step 4: Maximum Number of [tex]\( x \)[/tex]-Intercepts and Turning Points for a Cubic Function
For a cubic function [tex]\( ax^3 + bx^2 + cx + d \)[/tex]:
- The maximum number of [tex]\( x \)[/tex]-intercepts is 3.
- The maximum number of turning points is 2.
### Summary
- The function [tex]\( f(x) = -x^3 + 3x^2 - x - 1 \)[/tex] has 2 turning points.
- The turning points are at [tex]\( x = 1 - \frac{\sqrt{6}}{3} \)[/tex] (local minimum) and [tex]\( x = 1 + \frac{\sqrt{6}}{3} \)[/tex] (local maximum).
- The function has 3 [tex]\( x \)[/tex]-intercepts at [tex]\( x = 1, \quad x = 1 - \sqrt{2}, \quad x = 1 + \sqrt{2} \)[/tex].
- These results align with the general properties of cubic functions, which can have at most 3 [tex]\( x \)[/tex]-intercepts and 2 turning points.
### Step 1: Finding the Turning Points
To find the turning points, we need to calculate the first derivative of the function and solve for [tex]\( x \)[/tex] where this derivative is zero.
The first derivative of [tex]\( f(x) \)[/tex] is:
[tex]\[ f'(x) = \frac{d}{dx} (-x^3 + 3x^2 - x - 1) \][/tex]
[tex]\[ f'(x) = -3x^2 + 6x - 1 \][/tex]
We set the first derivative equal to zero to find the critical points:
[tex]\[ -3x^2 + 6x - 1 = 0 \][/tex]
Solving this quadratic equation, we find the critical points (turning points):
[tex]\[ x = \frac{6 \pm \sqrt{36 - 4 \cdot (-3) \cdot (-1)}}{2 \cdot (-3)} \][/tex]
[tex]\[ x = \frac{6 \pm \sqrt{36 - 12}}{-6} \][/tex]
[tex]\[ x = \frac{6 \pm \sqrt{24}}{-6} \][/tex]
[tex]\[ x = \frac{6 \pm 2\sqrt{6}}{-6} \][/tex]
[tex]\[ x = 1 - \frac{\sqrt{6}}{3}, \quad x = 1 + \frac{\sqrt{6}}{3} \][/tex]
### Step 2: Determining the Nature of the Turning Points
We evaluate the second derivative to determine the nature of the turning points.
The second derivative of [tex]\( f(x) \)[/tex] is:
[tex]\[ f''(x) = \frac{d}{dx} (-3x^2 + 6x - 1) \][/tex]
[tex]\[ f''(x) = -6x + 6 \][/tex]
We substitute the turning points into [tex]\( f''(x) \)[/tex]:
For [tex]\( x = 1 - \frac{\sqrt{6}}{3} \)[/tex]:
[tex]\[ f''\left(1 - \frac{\sqrt{6}}{3}\right) = -6\left(1 - \frac{\sqrt{6}}{3}\right) + 6 = -6 + 2\sqrt{6} + 6 = 2\sqrt{6} \][/tex]
Since [tex]\( f''\left(1 - \frac{\sqrt{6}}{3}\right) > 0 \)[/tex], this turning point is a local minimum.
For [tex]\( x = 1 + \frac{\sqrt{6}}{3} \)[/tex]:
[tex]\[ f''\left(1 + \frac{\sqrt{6}}{3}\right) = -6\left(1 + \frac{\sqrt{6}}{3}\right) + 6 = -6 - 2\sqrt{6} + 6 = -2\sqrt{6} \][/tex]
Since [tex]\( f''\left(1 + \frac{\sqrt{6}}{3}\right) < 0 \)[/tex], this turning point is a local maximum.
### Step 3: Finding the [tex]\( x \)[/tex]-Intercepts
To find the [tex]\( x \)[/tex]-intercepts, we solve [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ -x^3 + 3x^2 - x - 1 = 0 \][/tex]
Solving this cubic equation, we get the [tex]\( x \)[/tex]-intercepts:
[tex]\[ x = 1, \quad x = 1 - \sqrt{2}, \quad x = 1 + \sqrt{2} \][/tex]
### Step 4: Maximum Number of [tex]\( x \)[/tex]-Intercepts and Turning Points for a Cubic Function
For a cubic function [tex]\( ax^3 + bx^2 + cx + d \)[/tex]:
- The maximum number of [tex]\( x \)[/tex]-intercepts is 3.
- The maximum number of turning points is 2.
### Summary
- The function [tex]\( f(x) = -x^3 + 3x^2 - x - 1 \)[/tex] has 2 turning points.
- The turning points are at [tex]\( x = 1 - \frac{\sqrt{6}}{3} \)[/tex] (local minimum) and [tex]\( x = 1 + \frac{\sqrt{6}}{3} \)[/tex] (local maximum).
- The function has 3 [tex]\( x \)[/tex]-intercepts at [tex]\( x = 1, \quad x = 1 - \sqrt{2}, \quad x = 1 + \sqrt{2} \)[/tex].
- These results align with the general properties of cubic functions, which can have at most 3 [tex]\( x \)[/tex]-intercepts and 2 turning points.
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. For precise answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.