Get the information you need quickly and easily with IDNLearn.com. Get timely and accurate answers to your questions from our dedicated community of experts who are here to help you.
Sagot :
To solve the given trigonometric equation [tex]\(2 \cos ^2(\theta)-3 \cos (\theta)+1=0\)[/tex], we can approach it as a quadratic equation in [tex]\(\cos(\theta)\)[/tex].
Let's start by setting [tex]\(x = \cos(\theta)\)[/tex]. This transforms the equation into a more familiar quadratic form:
[tex]\[2x^2 - 3x + 1 = 0\][/tex]
Next, we solve this quadratic equation for [tex]\(x\)[/tex]. We can use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For our specific equation, [tex]\(a = 2\)[/tex], [tex]\(b = -3\)[/tex], and [tex]\(c = 1\)[/tex]. Plugging these values into the quadratic formula, we get:
[tex]\[ x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \cdot 2 \cdot 1}}{2 \cdot 2} \][/tex]
[tex]\[ x = \frac{3 \pm \sqrt{9 - 8}}{4} \][/tex]
[tex]\[ x = \frac{3 \pm \sqrt{1}}{4} \][/tex]
[tex]\[ x = \frac{3 \pm 1}{4} \][/tex]
This gives us two solutions for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{3 + 1}{4} = 1 \][/tex]
[tex]\[ x = \frac{3 - 1}{4} = \frac{1}{2} \][/tex]
Since [tex]\(x = \cos(\theta)\)[/tex], we can convert these solutions back to [tex]\(\theta\)[/tex]:
1. [tex]\(\cos(\theta) = 1\)[/tex]
2. [tex]\(\cos(\theta) = \frac{1}{2}\)[/tex]
For [tex]\(\cos(\theta) = 1\)[/tex]:
[tex]\(\theta\)[/tex] can be:
[tex]\[ \theta = 2k\pi \][/tex]
for any integer [tex]\(k\)[/tex], considering the periodicity of the cosine function.
For [tex]\(\cos(\theta) = \frac{1}{2}\)[/tex]:
[tex]\(\theta\)[/tex] can be:
[tex]\[ \theta = \pm \frac{\pi}{3} + 2k\pi \][/tex]
for any integer [tex]\(k\)[/tex], taking into account all possible angles where the cosine value is [tex]\(\frac{1}{2}\)[/tex], which are [tex]\(\frac{\pi}{3}\)[/tex] and [tex]\(-\frac{\pi}{3}\)[/tex].
Thus, the complete solution set for the equation [tex]\(2 \cos ^2(\theta)-3 \cos (\theta)+1=0\)[/tex] in terms of [tex]\(\theta\)[/tex] includes the angles derived from [tex]\(\cos(\theta) = 1\)[/tex] and [tex]\(\cos(\theta) = \frac{1}{2}\)[/tex].
Let's start by setting [tex]\(x = \cos(\theta)\)[/tex]. This transforms the equation into a more familiar quadratic form:
[tex]\[2x^2 - 3x + 1 = 0\][/tex]
Next, we solve this quadratic equation for [tex]\(x\)[/tex]. We can use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For our specific equation, [tex]\(a = 2\)[/tex], [tex]\(b = -3\)[/tex], and [tex]\(c = 1\)[/tex]. Plugging these values into the quadratic formula, we get:
[tex]\[ x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \cdot 2 \cdot 1}}{2 \cdot 2} \][/tex]
[tex]\[ x = \frac{3 \pm \sqrt{9 - 8}}{4} \][/tex]
[tex]\[ x = \frac{3 \pm \sqrt{1}}{4} \][/tex]
[tex]\[ x = \frac{3 \pm 1}{4} \][/tex]
This gives us two solutions for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{3 + 1}{4} = 1 \][/tex]
[tex]\[ x = \frac{3 - 1}{4} = \frac{1}{2} \][/tex]
Since [tex]\(x = \cos(\theta)\)[/tex], we can convert these solutions back to [tex]\(\theta\)[/tex]:
1. [tex]\(\cos(\theta) = 1\)[/tex]
2. [tex]\(\cos(\theta) = \frac{1}{2}\)[/tex]
For [tex]\(\cos(\theta) = 1\)[/tex]:
[tex]\(\theta\)[/tex] can be:
[tex]\[ \theta = 2k\pi \][/tex]
for any integer [tex]\(k\)[/tex], considering the periodicity of the cosine function.
For [tex]\(\cos(\theta) = \frac{1}{2}\)[/tex]:
[tex]\(\theta\)[/tex] can be:
[tex]\[ \theta = \pm \frac{\pi}{3} + 2k\pi \][/tex]
for any integer [tex]\(k\)[/tex], taking into account all possible angles where the cosine value is [tex]\(\frac{1}{2}\)[/tex], which are [tex]\(\frac{\pi}{3}\)[/tex] and [tex]\(-\frac{\pi}{3}\)[/tex].
Thus, the complete solution set for the equation [tex]\(2 \cos ^2(\theta)-3 \cos (\theta)+1=0\)[/tex] in terms of [tex]\(\theta\)[/tex] includes the angles derived from [tex]\(\cos(\theta) = 1\)[/tex] and [tex]\(\cos(\theta) = \frac{1}{2}\)[/tex].
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for trusting IDNLearn.com. We’re dedicated to providing accurate answers, so visit us again for more solutions.