Get the information you need with the help of IDNLearn.com's extensive Q&A platform. Get thorough and trustworthy answers to your queries from our extensive network of knowledgeable professionals.
Sagot :
To solve the given trigonometric equation [tex]\(2 \cos ^2(\theta)-3 \cos (\theta)+1=0\)[/tex], we can approach it as a quadratic equation in [tex]\(\cos(\theta)\)[/tex].
Let's start by setting [tex]\(x = \cos(\theta)\)[/tex]. This transforms the equation into a more familiar quadratic form:
[tex]\[2x^2 - 3x + 1 = 0\][/tex]
Next, we solve this quadratic equation for [tex]\(x\)[/tex]. We can use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For our specific equation, [tex]\(a = 2\)[/tex], [tex]\(b = -3\)[/tex], and [tex]\(c = 1\)[/tex]. Plugging these values into the quadratic formula, we get:
[tex]\[ x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \cdot 2 \cdot 1}}{2 \cdot 2} \][/tex]
[tex]\[ x = \frac{3 \pm \sqrt{9 - 8}}{4} \][/tex]
[tex]\[ x = \frac{3 \pm \sqrt{1}}{4} \][/tex]
[tex]\[ x = \frac{3 \pm 1}{4} \][/tex]
This gives us two solutions for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{3 + 1}{4} = 1 \][/tex]
[tex]\[ x = \frac{3 - 1}{4} = \frac{1}{2} \][/tex]
Since [tex]\(x = \cos(\theta)\)[/tex], we can convert these solutions back to [tex]\(\theta\)[/tex]:
1. [tex]\(\cos(\theta) = 1\)[/tex]
2. [tex]\(\cos(\theta) = \frac{1}{2}\)[/tex]
For [tex]\(\cos(\theta) = 1\)[/tex]:
[tex]\(\theta\)[/tex] can be:
[tex]\[ \theta = 2k\pi \][/tex]
for any integer [tex]\(k\)[/tex], considering the periodicity of the cosine function.
For [tex]\(\cos(\theta) = \frac{1}{2}\)[/tex]:
[tex]\(\theta\)[/tex] can be:
[tex]\[ \theta = \pm \frac{\pi}{3} + 2k\pi \][/tex]
for any integer [tex]\(k\)[/tex], taking into account all possible angles where the cosine value is [tex]\(\frac{1}{2}\)[/tex], which are [tex]\(\frac{\pi}{3}\)[/tex] and [tex]\(-\frac{\pi}{3}\)[/tex].
Thus, the complete solution set for the equation [tex]\(2 \cos ^2(\theta)-3 \cos (\theta)+1=0\)[/tex] in terms of [tex]\(\theta\)[/tex] includes the angles derived from [tex]\(\cos(\theta) = 1\)[/tex] and [tex]\(\cos(\theta) = \frac{1}{2}\)[/tex].
Let's start by setting [tex]\(x = \cos(\theta)\)[/tex]. This transforms the equation into a more familiar quadratic form:
[tex]\[2x^2 - 3x + 1 = 0\][/tex]
Next, we solve this quadratic equation for [tex]\(x\)[/tex]. We can use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For our specific equation, [tex]\(a = 2\)[/tex], [tex]\(b = -3\)[/tex], and [tex]\(c = 1\)[/tex]. Plugging these values into the quadratic formula, we get:
[tex]\[ x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \cdot 2 \cdot 1}}{2 \cdot 2} \][/tex]
[tex]\[ x = \frac{3 \pm \sqrt{9 - 8}}{4} \][/tex]
[tex]\[ x = \frac{3 \pm \sqrt{1}}{4} \][/tex]
[tex]\[ x = \frac{3 \pm 1}{4} \][/tex]
This gives us two solutions for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{3 + 1}{4} = 1 \][/tex]
[tex]\[ x = \frac{3 - 1}{4} = \frac{1}{2} \][/tex]
Since [tex]\(x = \cos(\theta)\)[/tex], we can convert these solutions back to [tex]\(\theta\)[/tex]:
1. [tex]\(\cos(\theta) = 1\)[/tex]
2. [tex]\(\cos(\theta) = \frac{1}{2}\)[/tex]
For [tex]\(\cos(\theta) = 1\)[/tex]:
[tex]\(\theta\)[/tex] can be:
[tex]\[ \theta = 2k\pi \][/tex]
for any integer [tex]\(k\)[/tex], considering the periodicity of the cosine function.
For [tex]\(\cos(\theta) = \frac{1}{2}\)[/tex]:
[tex]\(\theta\)[/tex] can be:
[tex]\[ \theta = \pm \frac{\pi}{3} + 2k\pi \][/tex]
for any integer [tex]\(k\)[/tex], taking into account all possible angles where the cosine value is [tex]\(\frac{1}{2}\)[/tex], which are [tex]\(\frac{\pi}{3}\)[/tex] and [tex]\(-\frac{\pi}{3}\)[/tex].
Thus, the complete solution set for the equation [tex]\(2 \cos ^2(\theta)-3 \cos (\theta)+1=0\)[/tex] in terms of [tex]\(\theta\)[/tex] includes the angles derived from [tex]\(\cos(\theta) = 1\)[/tex] and [tex]\(\cos(\theta) = \frac{1}{2}\)[/tex].
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Discover insightful answers at IDNLearn.com. We appreciate your visit and look forward to assisting you again.