Connect with knowledgeable individuals and find the best answers at IDNLearn.com. Our community is here to provide detailed and trustworthy answers to any questions you may have.
Sagot :
To calculate the binomial expansion of [tex]\( \sqrt{1 + x} \)[/tex], we can use the Binomial Theorem for non-integer exponents. The theorem states that:
[tex]\[ (1 + x)^n = 1 + nx + \frac{n(n - 1)x^2}{2!} + \frac{n(n - 1)(n - 2)x^3}{3!} + \cdots \][/tex]
For the function [tex]\( \sqrt{1 + x} \)[/tex], the exponent [tex]\( n \)[/tex] is [tex]\( \frac{1}{2} \)[/tex]. We'll calculate the first four terms of this expansion.
### Step-by-Step Solution:
Step 1: Calculate the constant term (first term):
[tex]\[ \text{Term 1} = 1 \][/tex]
Step 2: Calculate the linear term (second term):
[tex]\[ \text{Term 2} = n \cdot x = \frac{1}{2} \cdot x \][/tex]
Step 3: Calculate the quadratic term (third term):
[tex]\[ \text{Term 3} = \frac{n(n - 1) \cdot x^2}{2!} = \frac{\frac{1}{2} \left(\frac{1}{2} - 1\right) \cdot x^2}{2} = \frac{\frac{1}{2} \cdot -\frac{1}{2} \cdot x^2}{2} = \frac{-\frac{1}{4} \cdot x^2}{2} = -\frac{1}{8} \cdot x^2 \][/tex]
Step 4: Calculate the cubic term (fourth term):
[tex]\[ \text{Term 4} = \frac{n(n - 1)(n - 2) \cdot x^3}{3!} = \frac{\frac{1}{2} \left(\frac{1}{2} - 1\right) \left(\frac{1}{2} - 2\right) \cdot x^3}{6} = \frac{\frac{1}{2} \cdot -\frac{1}{2} \cdot -\frac{3}{2} \cdot x^3}{6} = \frac{\frac{3}{8} \cdot x^3}{6} = \frac{3}{48} \cdot x^3 = \frac{1}{16} \cdot x^3 \][/tex]
So, the first four terms of the binomial expansion of [tex]\( \sqrt{1 + x} \)[/tex] are:
[tex]\[ 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 \][/tex]
ii) Use the expansion to evaluate [tex]\( \sqrt{9} \)[/tex], correct to three decimal places:
To approximate [tex]\( \sqrt{9} \)[/tex], we can use the relationship [tex]\( \sqrt{9} = \sqrt{(1 + x)} \times 3 \)[/tex]. We modify [tex]\( 1 + x \)[/tex] such that the expression inside the square root is near 9. Consider [tex]\( x = -0.1 / 9 \)[/tex]. Thus:
#### Step 1:
Evaluate the expansion for [tex]\( x = -\frac{0.1}{9} \)[/tex]:
[tex]\[ x_{\text{approx}} = -\frac{0.1}{9} \][/tex]
#### Step 2:
Substitute [tex]\( x_{\text{approx}} \)[/tex] into each term calculated in the expansion:
Term 1:
[tex]\[ 1 \][/tex]
Term 2:
[tex]\[ \frac{1}{2} \cdot x_{\text{approx}} = \frac{1}{2} \cdot \left(-\frac{0.1}{9}\right) = -0.005557 \][/tex]
Term 3:
[tex]\[ -\frac{1}{8} (x_{\text{approx}})^2 = -\frac{1}{8} \left(-\frac{0.1}{9}\right)^2 = -1.125 \times 10^{-6} \][/tex]
Term 4:
[tex]\[ \frac{1}{16} (x_{\text{approx}})^3 = \frac{1}{16} \left(-\frac{0.1}{9}\right)^3 = 1.687 \times 10^{-9} \][/tex]
Summing these terms gives the binomial expansion's approximation:
[tex]\[ 1 + (-0.005557) + (-1.125 \times 10^{-6}) + 1.687 \times 10^{-9} \][/tex]
[tex]\[ = 0.994428 - 0.000001 + 0.0000001 \approx 0.994429 \][/tex]
Therefore, the approximation of [tex]\( \sqrt{9} \)[/tex] is:
[tex]\[ 0.994 \text{ (correct to three decimal places)} \][/tex]
This process enables us to use the binomial expansion to approximate the value of the square root to three decimal places.
[tex]\[ (1 + x)^n = 1 + nx + \frac{n(n - 1)x^2}{2!} + \frac{n(n - 1)(n - 2)x^3}{3!} + \cdots \][/tex]
For the function [tex]\( \sqrt{1 + x} \)[/tex], the exponent [tex]\( n \)[/tex] is [tex]\( \frac{1}{2} \)[/tex]. We'll calculate the first four terms of this expansion.
### Step-by-Step Solution:
Step 1: Calculate the constant term (first term):
[tex]\[ \text{Term 1} = 1 \][/tex]
Step 2: Calculate the linear term (second term):
[tex]\[ \text{Term 2} = n \cdot x = \frac{1}{2} \cdot x \][/tex]
Step 3: Calculate the quadratic term (third term):
[tex]\[ \text{Term 3} = \frac{n(n - 1) \cdot x^2}{2!} = \frac{\frac{1}{2} \left(\frac{1}{2} - 1\right) \cdot x^2}{2} = \frac{\frac{1}{2} \cdot -\frac{1}{2} \cdot x^2}{2} = \frac{-\frac{1}{4} \cdot x^2}{2} = -\frac{1}{8} \cdot x^2 \][/tex]
Step 4: Calculate the cubic term (fourth term):
[tex]\[ \text{Term 4} = \frac{n(n - 1)(n - 2) \cdot x^3}{3!} = \frac{\frac{1}{2} \left(\frac{1}{2} - 1\right) \left(\frac{1}{2} - 2\right) \cdot x^3}{6} = \frac{\frac{1}{2} \cdot -\frac{1}{2} \cdot -\frac{3}{2} \cdot x^3}{6} = \frac{\frac{3}{8} \cdot x^3}{6} = \frac{3}{48} \cdot x^3 = \frac{1}{16} \cdot x^3 \][/tex]
So, the first four terms of the binomial expansion of [tex]\( \sqrt{1 + x} \)[/tex] are:
[tex]\[ 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 \][/tex]
ii) Use the expansion to evaluate [tex]\( \sqrt{9} \)[/tex], correct to three decimal places:
To approximate [tex]\( \sqrt{9} \)[/tex], we can use the relationship [tex]\( \sqrt{9} = \sqrt{(1 + x)} \times 3 \)[/tex]. We modify [tex]\( 1 + x \)[/tex] such that the expression inside the square root is near 9. Consider [tex]\( x = -0.1 / 9 \)[/tex]. Thus:
#### Step 1:
Evaluate the expansion for [tex]\( x = -\frac{0.1}{9} \)[/tex]:
[tex]\[ x_{\text{approx}} = -\frac{0.1}{9} \][/tex]
#### Step 2:
Substitute [tex]\( x_{\text{approx}} \)[/tex] into each term calculated in the expansion:
Term 1:
[tex]\[ 1 \][/tex]
Term 2:
[tex]\[ \frac{1}{2} \cdot x_{\text{approx}} = \frac{1}{2} \cdot \left(-\frac{0.1}{9}\right) = -0.005557 \][/tex]
Term 3:
[tex]\[ -\frac{1}{8} (x_{\text{approx}})^2 = -\frac{1}{8} \left(-\frac{0.1}{9}\right)^2 = -1.125 \times 10^{-6} \][/tex]
Term 4:
[tex]\[ \frac{1}{16} (x_{\text{approx}})^3 = \frac{1}{16} \left(-\frac{0.1}{9}\right)^3 = 1.687 \times 10^{-9} \][/tex]
Summing these terms gives the binomial expansion's approximation:
[tex]\[ 1 + (-0.005557) + (-1.125 \times 10^{-6}) + 1.687 \times 10^{-9} \][/tex]
[tex]\[ = 0.994428 - 0.000001 + 0.0000001 \approx 0.994429 \][/tex]
Therefore, the approximation of [tex]\( \sqrt{9} \)[/tex] is:
[tex]\[ 0.994 \text{ (correct to three decimal places)} \][/tex]
This process enables us to use the binomial expansion to approximate the value of the square root to three decimal places.
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Thanks for visiting IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more helpful information.