Connect with a community that values knowledge and expertise on IDNLearn.com. Discover thorough and trustworthy answers from our community of knowledgeable professionals, tailored to meet your specific needs.

A particle moves in a straight line such that its displacement function is given by [tex] S = 4t - 2t^2 - 5t^3 [/tex].

Find:
1. The velocity at [tex] t = 38 [/tex].
2. The time [tex] t [/tex] when the velocity is zero.
3. The acceleration when [tex] t = 2 [/tex].


Sagot :

To solve the given problem, we need to perform several steps involving calculus to find the velocity and acceleration of the particle at specific times. Let's break this down step by step.

### Step 1: Determine the Velocity Function
The velocity of the particle is given by the first derivative of the displacement function [tex]\( S \)[/tex] with respect to time [tex]\( t \)[/tex].

The displacement function is:
[tex]\[ S(t) = 4t - 2t^2 - 5t^3 \][/tex]

To find the velocity, we differentiate [tex]\( S \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ v(t) = \frac{dS}{dt} = \frac{d}{dt} (4t - 2t^2 - 5t^3) = 4 - 4t - 15t^2 \][/tex]

### Step 2: Find the Velocity at [tex]\( t = 38 \)[/tex]
To determine the velocity at [tex]\( t = 38 \)[/tex], we substitute [tex]\( t = 38 \)[/tex] into the velocity function [tex]\( v(t) \)[/tex]:
[tex]\[ v(38) = 4 - 4(38) - 15(38^2) \][/tex]

Performing the arithmetic:
[tex]\[ v(38) = 4 - 152 - 15(1444) \][/tex]
[tex]\[ v(38) = 4 - 152 - 21660 \][/tex]
[tex]\[ v(38) = 4 - 21812 \][/tex]
[tex]\[ v(38) = -21808 \][/tex]

So, the velocity at [tex]\( t = 38 \)[/tex] is [tex]\( -21808 \)[/tex].

### Step 3: Find the Time When Velocity is Zero
To find the time [tex]\( t \)[/tex] when the velocity is zero, we set the velocity function equal to zero and solve for [tex]\( t \)[/tex]:
[tex]\[ 4 - 4t - 15t^2 = 0 \][/tex]

This is a quadratic equation in the form:
[tex]\[ -15t^2 - 4t + 4 = 0 \][/tex]

Using the quadratic formula [tex]\( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
Here, [tex]\( a = -15 \)[/tex], [tex]\( b = -4 \)[/tex], and [tex]\( c = 4 \)[/tex].

The solutions to the equation are:
[tex]\[ t = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(-15)(4)}}{2(-15)} \][/tex]
[tex]\[ t = \frac{4 \pm \sqrt{16 + 240}}{-30} \][/tex]
[tex]\[ t = \frac{4 \pm \sqrt{256}}{-30} \][/tex]
[tex]\[ t = \frac{4 \pm 16}{-30} \][/tex]

Thus, we have two solutions:
[tex]\[ t = \frac{4 + 16}{-30} = \frac{20}{-30} = -\frac{2}{3} \][/tex]
[tex]\[ t = \frac{4 - 16}{-30} = \frac{-12}{-30} = \frac{2}{5} \][/tex]

So, the times when the velocity is zero are [tex]\( t = -\frac{2}{3} \)[/tex] and [tex]\( t = \frac{2}{5} \)[/tex].

### Step 4: Determine the Acceleration Function
The acceleration of the particle is given by the second derivative of the displacement function [tex]\( S \)[/tex] with respect to time [tex]\( t \)[/tex].

We already have the first derivative (velocity function):
[tex]\[ v(t) = 4 - 4t - 15t^2 \][/tex]

To find the acceleration, we differentiate the velocity function [tex]\( v(t) \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ a(t) = \frac{dv}{dt} = \frac{d}{dt} (4 - 4t - 15t^2) = -4 - 30t \][/tex]

### Step 5: Find the Acceleration at [tex]\( t = 2 \)[/tex]
To determine the acceleration at [tex]\( t = 2 \)[/tex], we substitute [tex]\( t = 2 \)[/tex] into the acceleration function [tex]\( a(t) \)[/tex]:
[tex]\[ a(2) = -4 - 30(2) \][/tex]
[tex]\[ a(2) = -4 - 60 \][/tex]
[tex]\[ a(2) = -64 \][/tex]

So, the acceleration at [tex]\( t = 2 \)[/tex] is [tex]\( -64 \)[/tex].

### Summary
1. The velocity at [tex]\( t = 38 \)[/tex] is [tex]\( -21808 \)[/tex].
2. The times when the velocity is zero are [tex]\( t = -\frac{2}{3} \)[/tex] and [tex]\( t = \frac{2}{5} \)[/tex].
3. The acceleration at [tex]\( t = 2 \)[/tex] is [tex]\( -64 \)[/tex].
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and come back for more insightful information.