IDNLearn.com: Your trusted source for finding accurate answers. Our platform offers detailed and accurate responses from experts, helping you navigate any topic with confidence.
Sagot :
To solve the system of equations
[tex]\[ \begin{array}{l} 3x + 4y = 5 \\ 6x - y = 1 \end{array} \][/tex]
we can use the method of determinants, also known as Cramer's Rule. Here are the steps to find the solution [tex]\( (x, y) \)[/tex]:
### Step 1: Set up the equations
We start by setting up the two linear equations:
1. [tex]\( 3x + 4y = 5 \)[/tex]
2. [tex]\( 6x - y = 1 \)[/tex]
### Step 2: Formulate the coefficient matrix and the constant matrix
We identify the coefficients from the given equations:
For the equation [tex]\( 3x + 4y = 5 \)[/tex]:
- Coefficient of [tex]\( x \)[/tex] (a₁) = 3
- Coefficient of [tex]\( y \)[/tex] (b₁) = 4
- Constant term (c₁) = 5
For the equation [tex]\( 6x - y = 1 \)[/tex]:
- Coefficient of [tex]\( x \)[/tex] (a₂) = 6
- Coefficient of [tex]\( y \)[/tex] (b₂) = -1
- Constant term (c₂) = 1
### Step 3: Calculate the determinant of the coefficient matrix ([tex]\( \Delta \)[/tex])
The determinant [tex]\(\Delta\)[/tex] of the coefficient matrix is given by:
[tex]\[ \Delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1 \][/tex]
Substituting the values:
[tex]\[ \Delta = (3 \cdot -1) - (6 \cdot 4) = -3 - 24 = -27 \][/tex]
### Step 4: Calculate the determinant for [tex]\( x \)[/tex] ([tex]\( \Delta_x \)[/tex])
The determinant [tex]\( \Delta_x \)[/tex] is obtained by replacing the first column of the coefficient matrix with the constants from the right-hand side:
[tex]\[ \Delta_x = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix} = c_1 b_2 - c_2 b_1 \][/tex]
Substituting the values:
[tex]\[ \Delta_x = (5 \cdot -1) - (1 \cdot 4) = -5 - 4 = -9 \][/tex]
### Step 5: Calculate the determinant for [tex]\( y \)[/tex] ([tex]\( \Delta_y \)[/tex])
The determinant [tex]\( \Delta_y \)[/tex] is obtained by replacing the second column of the coefficient matrix with the constants from the right-hand side:
[tex]\[ \Delta_y = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} = a_1 c_2 - a_2 c_1 \][/tex]
Substituting the values:
[tex]\[ \Delta_y = (3 \cdot 1) - (6 \cdot 5) = 3 - 30 = -27 \][/tex]
### Step 6: Solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
Using Cramer's Rule:
[tex]\[ x = \frac{\Delta_x}{\Delta} \][/tex]
[tex]\[ y = \frac{\Delta_y}{\Delta} \][/tex]
Substituting the values:
[tex]\[ x = \frac{-9}{-27} = \frac{1}{3} \quad \text{or} \quad 0.3333 \][/tex]
[tex]\[ y = \frac{-27}{-27} = 1 \][/tex]
### Step 7: State the solution
The solution to the system of equations is:
[tex]\[ x = \frac{1}{3}, \quad y = 1 \][/tex]
Or, in decimal form:
[tex]\[ x \approx 0.3333, \quad y = 1 \][/tex]
Therefore, the values that simultaneously satisfy both equations are [tex]\( x \approx 0.3333 \)[/tex] and [tex]\( y = 1 \)[/tex].
[tex]\[ \begin{array}{l} 3x + 4y = 5 \\ 6x - y = 1 \end{array} \][/tex]
we can use the method of determinants, also known as Cramer's Rule. Here are the steps to find the solution [tex]\( (x, y) \)[/tex]:
### Step 1: Set up the equations
We start by setting up the two linear equations:
1. [tex]\( 3x + 4y = 5 \)[/tex]
2. [tex]\( 6x - y = 1 \)[/tex]
### Step 2: Formulate the coefficient matrix and the constant matrix
We identify the coefficients from the given equations:
For the equation [tex]\( 3x + 4y = 5 \)[/tex]:
- Coefficient of [tex]\( x \)[/tex] (a₁) = 3
- Coefficient of [tex]\( y \)[/tex] (b₁) = 4
- Constant term (c₁) = 5
For the equation [tex]\( 6x - y = 1 \)[/tex]:
- Coefficient of [tex]\( x \)[/tex] (a₂) = 6
- Coefficient of [tex]\( y \)[/tex] (b₂) = -1
- Constant term (c₂) = 1
### Step 3: Calculate the determinant of the coefficient matrix ([tex]\( \Delta \)[/tex])
The determinant [tex]\(\Delta\)[/tex] of the coefficient matrix is given by:
[tex]\[ \Delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1 \][/tex]
Substituting the values:
[tex]\[ \Delta = (3 \cdot -1) - (6 \cdot 4) = -3 - 24 = -27 \][/tex]
### Step 4: Calculate the determinant for [tex]\( x \)[/tex] ([tex]\( \Delta_x \)[/tex])
The determinant [tex]\( \Delta_x \)[/tex] is obtained by replacing the first column of the coefficient matrix with the constants from the right-hand side:
[tex]\[ \Delta_x = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix} = c_1 b_2 - c_2 b_1 \][/tex]
Substituting the values:
[tex]\[ \Delta_x = (5 \cdot -1) - (1 \cdot 4) = -5 - 4 = -9 \][/tex]
### Step 5: Calculate the determinant for [tex]\( y \)[/tex] ([tex]\( \Delta_y \)[/tex])
The determinant [tex]\( \Delta_y \)[/tex] is obtained by replacing the second column of the coefficient matrix with the constants from the right-hand side:
[tex]\[ \Delta_y = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} = a_1 c_2 - a_2 c_1 \][/tex]
Substituting the values:
[tex]\[ \Delta_y = (3 \cdot 1) - (6 \cdot 5) = 3 - 30 = -27 \][/tex]
### Step 6: Solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
Using Cramer's Rule:
[tex]\[ x = \frac{\Delta_x}{\Delta} \][/tex]
[tex]\[ y = \frac{\Delta_y}{\Delta} \][/tex]
Substituting the values:
[tex]\[ x = \frac{-9}{-27} = \frac{1}{3} \quad \text{or} \quad 0.3333 \][/tex]
[tex]\[ y = \frac{-27}{-27} = 1 \][/tex]
### Step 7: State the solution
The solution to the system of equations is:
[tex]\[ x = \frac{1}{3}, \quad y = 1 \][/tex]
Or, in decimal form:
[tex]\[ x \approx 0.3333, \quad y = 1 \][/tex]
Therefore, the values that simultaneously satisfy both equations are [tex]\( x \approx 0.3333 \)[/tex] and [tex]\( y = 1 \)[/tex].
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com is committed to your satisfaction. Thank you for visiting, and see you next time for more helpful answers.