Join the IDNLearn.com community and start getting the answers you need today. Get step-by-step guidance for all your technical questions from our knowledgeable community members.
Sagot :
Certainly! Let's solve this step-by-step using the gravitational force formula.
The gravitational force between two masses [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] separated by a distance [tex]\( r \)[/tex] is given by Newton's law of gravitation:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force,
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex]),
- [tex]\( m_1 \)[/tex] is the mass of the first object,
- [tex]\( m_2 \)[/tex] is the mass of the second object,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.
Given the values:
- [tex]\( F = 1.05 \times 10^{-4} \, \text{N} \)[/tex]
- [tex]\( r = 100,000 \, \text{m} \)[/tex]
- [tex]\( m_1 = 3.5 \times 10^6 \, \text{kg} \)[/tex]
We need to find [tex]\( m_2 \)[/tex].
First, rearrange the formula to solve for [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{F \cdot r^2}{G \cdot m_1} \][/tex]
Now substitute the given values into the equation:
[tex]\[ m_2 = \frac{1.05 \times 10^{-4} \cdot (100,000)^2}{6.67430 \times 10^{-11} \cdot 3.5 \times 10^6} \][/tex]
Perform the calculations step-by-step:
1. Calculate [tex]\( r^2 \)[/tex]:
[tex]\[ (100,000)^2 = 10^{10} \][/tex]
2. Multiply [tex]\( F \)[/tex] by [tex]\( r^2 \)[/tex]:
[tex]\[ 1.05 \times 10^{-4} \times 10^{10} = 1.05 \times 10^6 \][/tex]
3. Calculate [tex]\( G \cdot m_1 \)[/tex]:
[tex]\[ 6.67430 \times 10^{-11} \times 3.5 \times 10^6 = 2.335005 \times 10^{-4} \][/tex]
4. Divide the results:
[tex]\[ m_2 = \frac{1.05 \times 10^6}{2.335005 \times 10^{-4}} \][/tex]
5. Simplify the division:
[tex]\[ m_2 \approx 4494853392.8651705 \][/tex]
Therefore, the mass [tex]\( m_2 \)[/tex] of the second asteroid is approximately [tex]\( 4.49 \times 10^9 \, \text{kg} \)[/tex].
Looking at the options provided:
A. [tex]\( 4.1 \times 10^9 \, \text{kg} \)[/tex]
B. [tex]\( 4.5 \times 10^9 \, \text{kg} \)[/tex]
C. [tex]\( 4.1 \times 10^8 \, \text{kg} \)[/tex]
D. [tex]\( 4.5 \times 10^8 \, \text{kg} \)[/tex]
The closest value is B. [tex]\( 4.5 \times 10^9 \, \text{kg} \)[/tex].
Thus, the mass of the other asteroid is [tex]\( 4.5 \times 10^9 \, \text{kg} \)[/tex].
The gravitational force between two masses [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] separated by a distance [tex]\( r \)[/tex] is given by Newton's law of gravitation:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force,
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex]),
- [tex]\( m_1 \)[/tex] is the mass of the first object,
- [tex]\( m_2 \)[/tex] is the mass of the second object,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.
Given the values:
- [tex]\( F = 1.05 \times 10^{-4} \, \text{N} \)[/tex]
- [tex]\( r = 100,000 \, \text{m} \)[/tex]
- [tex]\( m_1 = 3.5 \times 10^6 \, \text{kg} \)[/tex]
We need to find [tex]\( m_2 \)[/tex].
First, rearrange the formula to solve for [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{F \cdot r^2}{G \cdot m_1} \][/tex]
Now substitute the given values into the equation:
[tex]\[ m_2 = \frac{1.05 \times 10^{-4} \cdot (100,000)^2}{6.67430 \times 10^{-11} \cdot 3.5 \times 10^6} \][/tex]
Perform the calculations step-by-step:
1. Calculate [tex]\( r^2 \)[/tex]:
[tex]\[ (100,000)^2 = 10^{10} \][/tex]
2. Multiply [tex]\( F \)[/tex] by [tex]\( r^2 \)[/tex]:
[tex]\[ 1.05 \times 10^{-4} \times 10^{10} = 1.05 \times 10^6 \][/tex]
3. Calculate [tex]\( G \cdot m_1 \)[/tex]:
[tex]\[ 6.67430 \times 10^{-11} \times 3.5 \times 10^6 = 2.335005 \times 10^{-4} \][/tex]
4. Divide the results:
[tex]\[ m_2 = \frac{1.05 \times 10^6}{2.335005 \times 10^{-4}} \][/tex]
5. Simplify the division:
[tex]\[ m_2 \approx 4494853392.8651705 \][/tex]
Therefore, the mass [tex]\( m_2 \)[/tex] of the second asteroid is approximately [tex]\( 4.49 \times 10^9 \, \text{kg} \)[/tex].
Looking at the options provided:
A. [tex]\( 4.1 \times 10^9 \, \text{kg} \)[/tex]
B. [tex]\( 4.5 \times 10^9 \, \text{kg} \)[/tex]
C. [tex]\( 4.1 \times 10^8 \, \text{kg} \)[/tex]
D. [tex]\( 4.5 \times 10^8 \, \text{kg} \)[/tex]
The closest value is B. [tex]\( 4.5 \times 10^9 \, \text{kg} \)[/tex].
Thus, the mass of the other asteroid is [tex]\( 4.5 \times 10^9 \, \text{kg} \)[/tex].
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to assisting you again.