IDNLearn.com provides a reliable platform for finding accurate and timely answers. Ask your questions and receive reliable, detailed answers from our dedicated community of experts.

Two asteroids are [tex][tex]$100,000 \, m$[/tex][/tex] apart. One has a mass of [tex][tex]$3.5 \times 10^6 \, kg$[/tex][/tex]. If the force of gravity between them is [tex][tex]$1.05 \times 10^{-4} \, N$[/tex][/tex], what is the mass of the other asteroid?

A. [tex][tex]$4.1 \times 10^9 \, kg$[/tex][/tex]
B. [tex][tex]$4.5 \times 10^9 \, kg$[/tex][/tex]
C. [tex][tex]$4.1 \times 10^8 \, kg$[/tex][/tex]
D. [tex][tex]$4.5 \times 10^8 \, kg$[/tex][/tex]


Sagot :

Certainly! Let's solve this step-by-step using the gravitational force formula.

The gravitational force between two masses [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] separated by a distance [tex]\( r \)[/tex] is given by Newton's law of gravitation:

[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]

where:
- [tex]\( F \)[/tex] is the gravitational force,
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex]),
- [tex]\( m_1 \)[/tex] is the mass of the first object,
- [tex]\( m_2 \)[/tex] is the mass of the second object,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.

Given the values:
- [tex]\( F = 1.05 \times 10^{-4} \, \text{N} \)[/tex]
- [tex]\( r = 100,000 \, \text{m} \)[/tex]
- [tex]\( m_1 = 3.5 \times 10^6 \, \text{kg} \)[/tex]

We need to find [tex]\( m_2 \)[/tex].

First, rearrange the formula to solve for [tex]\( m_2 \)[/tex]:

[tex]\[ m_2 = \frac{F \cdot r^2}{G \cdot m_1} \][/tex]

Now substitute the given values into the equation:

[tex]\[ m_2 = \frac{1.05 \times 10^{-4} \cdot (100,000)^2}{6.67430 \times 10^{-11} \cdot 3.5 \times 10^6} \][/tex]

Perform the calculations step-by-step:

1. Calculate [tex]\( r^2 \)[/tex]:
[tex]\[ (100,000)^2 = 10^{10} \][/tex]

2. Multiply [tex]\( F \)[/tex] by [tex]\( r^2 \)[/tex]:
[tex]\[ 1.05 \times 10^{-4} \times 10^{10} = 1.05 \times 10^6 \][/tex]

3. Calculate [tex]\( G \cdot m_1 \)[/tex]:
[tex]\[ 6.67430 \times 10^{-11} \times 3.5 \times 10^6 = 2.335005 \times 10^{-4} \][/tex]

4. Divide the results:
[tex]\[ m_2 = \frac{1.05 \times 10^6}{2.335005 \times 10^{-4}} \][/tex]

5. Simplify the division:
[tex]\[ m_2 \approx 4494853392.8651705 \][/tex]

Therefore, the mass [tex]\( m_2 \)[/tex] of the second asteroid is approximately [tex]\( 4.49 \times 10^9 \, \text{kg} \)[/tex].

Looking at the options provided:
A. [tex]\( 4.1 \times 10^9 \, \text{kg} \)[/tex]
B. [tex]\( 4.5 \times 10^9 \, \text{kg} \)[/tex]
C. [tex]\( 4.1 \times 10^8 \, \text{kg} \)[/tex]
D. [tex]\( 4.5 \times 10^8 \, \text{kg} \)[/tex]

The closest value is B. [tex]\( 4.5 \times 10^9 \, \text{kg} \)[/tex].

Thus, the mass of the other asteroid is [tex]\( 4.5 \times 10^9 \, \text{kg} \)[/tex].
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. For trustworthy and accurate answers, visit IDNLearn.com. Thanks for stopping by, and see you next time for more solutions.