IDNLearn.com offers a reliable platform for finding accurate and timely answers. Join our community to receive prompt and reliable responses to your questions from knowledgeable professionals.
Sagot :
To determine at which temperature the reaction is spontaneous, we need to calculate the Gibbs free energy change ([tex]\(\Delta G\)[/tex]) for each temperature given in the choices. The Gibbs free energy change can be calculated using the formula:
[tex]\[ \Delta G = \Delta H - T \Delta S \][/tex]
where:
- [tex]\(\Delta H\)[/tex] is the enthalpy change of the reaction.
- [tex]\(T\)[/tex] is the temperature in Kelvin.
- [tex]\(\Delta S\)[/tex] is the entropy change of the reaction.
Given:
- [tex]\(\Delta H = -92 \)[/tex] kJ/mol
- [tex]\(\Delta S = -0.199 \)[/tex] kJ/(mol·K)
We need to evaluate [tex]\(\Delta G\)[/tex] for each of the following temperatures: [tex]\(500 K\)[/tex], [tex]\(400 K\)[/tex], [tex]\(700 K\)[/tex], and [tex]\(600 K\)[/tex].
1. At [tex]\(500 K\)[/tex]:
[tex]\[ \Delta G = -92 - (500 \times -0.199) \][/tex]
[tex]\[ \Delta G = -92 + 99.5 \][/tex]
[tex]\[ \Delta G = 7.5 \text{ kJ/mol} \][/tex]
2. At [tex]\(400 K\)[/tex]:
[tex]\[ \Delta G = -92 - (400 \times -0.199) \][/tex]
[tex]\[ \Delta G = -92 + 79.6 \][/tex]
[tex]\[ \Delta G = -12.4 \text{ kJ/mol} \][/tex]
3. At [tex]\(700 K\)[/tex]:
[tex]\[ \Delta G = -92 - (700 \times -0.199) \][/tex]
[tex]\[ \Delta G = -92 + 139.3 \][/tex]
[tex]\[ \Delta G = 47.3 \text{ kJ/mol} \][/tex]
4. At [tex]\(600 K\)[/tex]:
[tex]\[ \Delta G = -92 - (600 \times -0.199) \][/tex]
[tex]\[ \Delta G = -92 + 119.4 \][/tex]
[tex]\[ \Delta G = 27.4 \text{ kJ/mol} \][/tex]
A reaction is spontaneous when [tex]\(\Delta G\)[/tex] is less than zero (i.e., [tex]\(\Delta G < 0\)[/tex]).
From our calculations:
- At [tex]\(500 K\)[/tex], [tex]\(\Delta G = 7.5\)[/tex] kJ/mol (not spontaneous).
- At [tex]\(400 K\)[/tex], [tex]\(\Delta G = -12.4\)[/tex] kJ/mol (spontaneous).
- At [tex]\(700 K\)[/tex], [tex]\(\Delta G = 47.3\)[/tex] kJ/mol (not spontaneous).
- At [tex]\(600 K\)[/tex], [tex]\(\Delta G = 27.4\)[/tex] kJ/mol (not spontaneous).
Therefore, the reaction is only spontaneous at [tex]\(400 K\)[/tex].
Thus, the correct answer is:
B. [tex]\[400 K\][/tex]
[tex]\[ \Delta G = \Delta H - T \Delta S \][/tex]
where:
- [tex]\(\Delta H\)[/tex] is the enthalpy change of the reaction.
- [tex]\(T\)[/tex] is the temperature in Kelvin.
- [tex]\(\Delta S\)[/tex] is the entropy change of the reaction.
Given:
- [tex]\(\Delta H = -92 \)[/tex] kJ/mol
- [tex]\(\Delta S = -0.199 \)[/tex] kJ/(mol·K)
We need to evaluate [tex]\(\Delta G\)[/tex] for each of the following temperatures: [tex]\(500 K\)[/tex], [tex]\(400 K\)[/tex], [tex]\(700 K\)[/tex], and [tex]\(600 K\)[/tex].
1. At [tex]\(500 K\)[/tex]:
[tex]\[ \Delta G = -92 - (500 \times -0.199) \][/tex]
[tex]\[ \Delta G = -92 + 99.5 \][/tex]
[tex]\[ \Delta G = 7.5 \text{ kJ/mol} \][/tex]
2. At [tex]\(400 K\)[/tex]:
[tex]\[ \Delta G = -92 - (400 \times -0.199) \][/tex]
[tex]\[ \Delta G = -92 + 79.6 \][/tex]
[tex]\[ \Delta G = -12.4 \text{ kJ/mol} \][/tex]
3. At [tex]\(700 K\)[/tex]:
[tex]\[ \Delta G = -92 - (700 \times -0.199) \][/tex]
[tex]\[ \Delta G = -92 + 139.3 \][/tex]
[tex]\[ \Delta G = 47.3 \text{ kJ/mol} \][/tex]
4. At [tex]\(600 K\)[/tex]:
[tex]\[ \Delta G = -92 - (600 \times -0.199) \][/tex]
[tex]\[ \Delta G = -92 + 119.4 \][/tex]
[tex]\[ \Delta G = 27.4 \text{ kJ/mol} \][/tex]
A reaction is spontaneous when [tex]\(\Delta G\)[/tex] is less than zero (i.e., [tex]\(\Delta G < 0\)[/tex]).
From our calculations:
- At [tex]\(500 K\)[/tex], [tex]\(\Delta G = 7.5\)[/tex] kJ/mol (not spontaneous).
- At [tex]\(400 K\)[/tex], [tex]\(\Delta G = -12.4\)[/tex] kJ/mol (spontaneous).
- At [tex]\(700 K\)[/tex], [tex]\(\Delta G = 47.3\)[/tex] kJ/mol (not spontaneous).
- At [tex]\(600 K\)[/tex], [tex]\(\Delta G = 27.4\)[/tex] kJ/mol (not spontaneous).
Therefore, the reaction is only spontaneous at [tex]\(400 K\)[/tex].
Thus, the correct answer is:
B. [tex]\[400 K\][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! For precise answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.