Get expert advice and community support for your questions on IDNLearn.com. Find reliable solutions to your questions quickly and easily with help from our experienced experts.
Sagot :
To determine the independence of events, we can use the concept of conditional probability. Two events [tex]\( X \)[/tex] and [tex]\( Y \)[/tex] are independent if and only if [tex]\( P(X \cap Y) = P(X) \cdot P(Y) \)[/tex], or equivalently, [tex]\( P(X \mid Y) = P(X) \)[/tex].
Let’s examine the provided data:
### Probabilities of Individual Events
1. Total number of employees: 60
2. Probability of an employee being male ([tex]\( P(A) \)[/tex]):
[tex]\[ P(A) = \frac{36}{60} = 0.6 \][/tex]
3. Probability of an employee being female ([tex]\( P(B) \)[/tex]):
[tex]\[ P(B) = \frac{24}{60} = 0.4 \][/tex]
4. Probability of an employee taking public transportation ([tex]\( P(C) \)[/tex]):
[tex]\[ P(C) = \frac{20}{60} = 0.3333 \][/tex]
5. Probability of an employee taking their own transportation ([tex]\( P(D) \)[/tex]):
[tex]\[ P(D) = \frac{30}{60} = 0.5 \][/tex]
6. Probability of an employee taking other forms of transportation ([tex]\( P(E) \)[/tex]):
[tex]\[ P(E) = \frac{10}{60} = 0.1667 \][/tex]
### Conditional Probabilities
1. Probability that an employee is male given that they take public transportation ([tex]\( P(A \mid C) \)[/tex]):
- 12 out of 20 public transport users are male:
[tex]\[ P(A \mid C) = \frac{12}{20} = 0.6 \][/tex]
Compare this with [tex]\( P(A) \)[/tex]:
[tex]\[ P(A \mid C) = P(A) \quad (\text{True}) \][/tex]
Thus, events [tex]\( A \)[/tex] and [tex]\( C \)[/tex] are independent.
2. Probability that an employee is male given that they take their own transportation ([tex]\( P(A \mid D) \)[/tex]):
- 20 out of 30 own transport users are male:
[tex]\[ P(A \mid D) = \frac{20}{30} = 0.6667 \][/tex]
Compare this with [tex]\( P(A) \)[/tex]:
[tex]\[ P(A \mid D) \neq P(A) \quad (\text{False}) \][/tex]
Thus, events [tex]\( A \)[/tex] and [tex]\( D \)[/tex] are not independent.
3. Probability that an employee is female given that they take their own transportation ([tex]\( P(B \mid D) \)[/tex]):
- 10 out of 30 own transport users are female:
[tex]\[ P(B \mid D) = \frac{10}{30} = 0.3333 \][/tex]
Compare this with [tex]\( P(B) \)[/tex]:
[tex]\[ P(B \mid D) \neq P(B) \quad (\text{False}) \][/tex]
Thus, events [tex]\( B \)[/tex] and [tex]\( D \)[/tex] are not independent.
4. Probability that an employee is female given that they use other forms of transport ([tex]\( P(B \mid E) \)[/tex]):
- 6 out of 10 other transport users are female:
[tex]\[ P(B \mid E) = \frac{6}{10} = 0.6 \][/tex]
Compare this with [tex]\( P(B) \)[/tex]:
[tex]\[ P(B \mid E) \neq P(B) \quad (\text{False}) \][/tex]
Thus, events [tex]\( B \)[/tex] and [tex]\( E \)[/tex] are not independent.
Therefore, the only pair of independent events from the choices given is:
[tex]\[ A \text{ and } C \: (\text{The employee is male and takes public transportation}) \][/tex]
So, the two events that are independent are:
[tex]\[ \boxed{A \text{ and } C} \][/tex]
Let’s examine the provided data:
### Probabilities of Individual Events
1. Total number of employees: 60
2. Probability of an employee being male ([tex]\( P(A) \)[/tex]):
[tex]\[ P(A) = \frac{36}{60} = 0.6 \][/tex]
3. Probability of an employee being female ([tex]\( P(B) \)[/tex]):
[tex]\[ P(B) = \frac{24}{60} = 0.4 \][/tex]
4. Probability of an employee taking public transportation ([tex]\( P(C) \)[/tex]):
[tex]\[ P(C) = \frac{20}{60} = 0.3333 \][/tex]
5. Probability of an employee taking their own transportation ([tex]\( P(D) \)[/tex]):
[tex]\[ P(D) = \frac{30}{60} = 0.5 \][/tex]
6. Probability of an employee taking other forms of transportation ([tex]\( P(E) \)[/tex]):
[tex]\[ P(E) = \frac{10}{60} = 0.1667 \][/tex]
### Conditional Probabilities
1. Probability that an employee is male given that they take public transportation ([tex]\( P(A \mid C) \)[/tex]):
- 12 out of 20 public transport users are male:
[tex]\[ P(A \mid C) = \frac{12}{20} = 0.6 \][/tex]
Compare this with [tex]\( P(A) \)[/tex]:
[tex]\[ P(A \mid C) = P(A) \quad (\text{True}) \][/tex]
Thus, events [tex]\( A \)[/tex] and [tex]\( C \)[/tex] are independent.
2. Probability that an employee is male given that they take their own transportation ([tex]\( P(A \mid D) \)[/tex]):
- 20 out of 30 own transport users are male:
[tex]\[ P(A \mid D) = \frac{20}{30} = 0.6667 \][/tex]
Compare this with [tex]\( P(A) \)[/tex]:
[tex]\[ P(A \mid D) \neq P(A) \quad (\text{False}) \][/tex]
Thus, events [tex]\( A \)[/tex] and [tex]\( D \)[/tex] are not independent.
3. Probability that an employee is female given that they take their own transportation ([tex]\( P(B \mid D) \)[/tex]):
- 10 out of 30 own transport users are female:
[tex]\[ P(B \mid D) = \frac{10}{30} = 0.3333 \][/tex]
Compare this with [tex]\( P(B) \)[/tex]:
[tex]\[ P(B \mid D) \neq P(B) \quad (\text{False}) \][/tex]
Thus, events [tex]\( B \)[/tex] and [tex]\( D \)[/tex] are not independent.
4. Probability that an employee is female given that they use other forms of transport ([tex]\( P(B \mid E) \)[/tex]):
- 6 out of 10 other transport users are female:
[tex]\[ P(B \mid E) = \frac{6}{10} = 0.6 \][/tex]
Compare this with [tex]\( P(B) \)[/tex]:
[tex]\[ P(B \mid E) \neq P(B) \quad (\text{False}) \][/tex]
Thus, events [tex]\( B \)[/tex] and [tex]\( E \)[/tex] are not independent.
Therefore, the only pair of independent events from the choices given is:
[tex]\[ A \text{ and } C \: (\text{The employee is male and takes public transportation}) \][/tex]
So, the two events that are independent are:
[tex]\[ \boxed{A \text{ and } C} \][/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. IDNLearn.com provides the answers you need. Thank you for visiting, and see you next time for more valuable insights.