IDNLearn.com: Where questions are met with accurate and insightful answers. Our platform provides accurate, detailed responses to help you navigate any topic with ease.

The enthalpies of formation of the compounds in the combustion of methane are given as follows:

[tex]\[ CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g) \][/tex]

[tex]\[ \Delta H_f \text{ of } CH_4(g) = -74.6 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_f \text{ of } CO_2(g) = -393.5 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_f \text{ of } H_2O(g) = -241.82 \, \text{kJ/mol} \][/tex]

How much heat is released by the combustion of 2 mol of methane?

Use the formula:

[tex]\[ \Delta H_{combustion} = \sum (\Delta H_{f,\text{products}}) - \sum (\Delta H_{f,\text{reactants}}) \][/tex]

Possible answers:

A. [tex]\(-80.3 \, \text{kJ}\)[/tex]
B. [tex]\(-802.5 \, \text{kJ}\)[/tex]
C. [tex]\(-1,605.1 \, \text{kJ}\)[/tex]
D. [tex]\(-6,420.3 \, \text{kJ}\)[/tex]


Sagot :

To determine how much heat is released by the combustion of 2 mol of methane, we need to use the enthalpies of formation (ΔH_f) for each compound involved in the reaction. The reaction is given by:

[tex]\[ CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g) \][/tex]

The enthalpies of formation are given as:
- [tex]\(\Delta H_f \text{ of } CH_4(g) = -74.6 \text{ kJ/mol} \)[/tex]
- [tex]\(\Delta H_f \text{ of } CO_2(g) = -393.5 \text{ kJ/mol} \)[/tex]
- [tex]\(\Delta H_f \text{ of } H_2O(g) = -241.82 \text{ kJ/mol} \)[/tex]

### Step-by-Step Solution

1. Determine the moles of each compound:
- For methane ([tex]\(CH_4\)[/tex]), moles = 2 (as we are considering the combustion of 2 moles of methane).
- For carbon dioxide ([tex]\(CO_2\)[/tex]), moles = 2 (1 mole of [tex]\(CO_2\)[/tex] per 1 mole of [tex]\(CH_4\)[/tex]).
- For water ([tex]\(H_2O\)[/tex]), moles = 4 (2 moles of [tex]\(H_2O\)[/tex] per 1 mole of [tex]\(CH_4\)[/tex]).

2. Calculate the total enthalpy change for the reactants:
- Total enthalpy of the reactants [tex]\( \Delta H_{\text{reactants}} \)[/tex]:
[tex]\[ \Delta H_{\text{reactants}} = n_{\text{CH}_4} \times \Delta H_f \text{ of } CH_4 = 2 \times (-74.6) = -149.2 \text{ kJ} \][/tex]

3. Calculate the total enthalpy change for the products:
- Total enthalpy of the products [tex]\( \Delta H_{\text{products}} \)[/tex]:
[tex]\[ \Delta H_{\text{products}} = (n_{\text{CO}_2} \times \Delta H_f \text{ of } CO_2) + (n_{\text{H}_2O} \times \Delta H_f \text{ of } H_2O) \][/tex]
Substituting the values:
[tex]\[ \Delta H_{\text{products}} = (2 \times -393.5) + (4 \times -241.82) \][/tex]
[tex]\[ = -787 + (-967.28) \][/tex]
[tex]\[ = -1754.28 \text{ kJ} \][/tex]

4. Calculate the enthalpy change (ΔH_combustion) for the combustion reaction:
[tex]\[ \Delta H_{\text{combustion}} = \Delta H_{\text{products}} - \Delta H_{\text{reactants}} \][/tex]
Substituting the values:
[tex]\[ \Delta H_{\text{combustion}} = -1754.28 - (-149.2) \][/tex]
[tex]\[ = -1754.28 + 149.2 \][/tex]
[tex]\[ = -1605.08 \text{ kJ} \][/tex]

Therefore, the heat released by the combustion of 2 moles of methane is [tex]\(-1605.08\)[/tex] kJ. The correct answer is:

[tex]\[ -1,605.1 \text{ kJ} \][/tex]