IDNLearn.com offers a comprehensive solution for all your question and answer needs. Ask your questions and get detailed, reliable answers from our community of knowledgeable experts.
Sagot :
To find [tex]\(\mu_x\)[/tex] (the mean of the sampling distribution of the sample mean) and [tex]\(\sigma_x\)[/tex] (the standard deviation of the sampling distribution of the sample mean), follow these steps:
1. List the sample means:
We have the sample means given in the table:
- Sample 1: 2.00
- Sample 2: 2.50
- Sample 3: 3.00
- Sample 4: 2.50
- Sample 5: 3.00
- Sample 6: 3.50
- Sample 7: 3.00
- Sample 8: 3.50
- Sample 9: 4.00
2. Calculate the mean of the sample means ([tex]\(\mu_x\)[/tex]):
[tex]\[ \mu_x = \frac{\sum \bar{x}}{n} \][/tex]
[tex]\(\sum \bar{x}\)[/tex] is the sum of all sample means.
Calculate [tex]\(\sum \bar{x}\)[/tex]:
[tex]\[ 2.00 + 2.50 + 3.00 + 2.50 + 3.00 + 3.50 + 3.00 + 3.50 + 4.00 = 27.00 \][/tex]
Now, divide by the number of samples [tex]\(n = 9\)[/tex]:
[tex]\[ \mu_x = \frac{27.00}{9} = 3.00 \][/tex]
3. Calculate the standard deviation of the sample means ([tex]\(\sigma_x\)[/tex]):
[tex]\[ \sigma_x = \sqrt{\frac{\sum (\bar{x} - \mu_x)^2}{n}} \][/tex]
Where [tex]\(\sum (\bar{x} - \mu_x)^2\)[/tex] is the sum of the squared differences between each sample mean and [tex]\(\mu_x\)[/tex].
First, find each [tex]\(\bar{x} - \mu_x\)[/tex]:
[tex]\[ (2.00 - 3.00), (2.50 - 3.00), (3.00 - 3.00), (2.50 - 3.00), (3.00 - 3.00), (3.50 - 3.00), (3.00 - 3.00), (3.50 - 3.00), (4.00 - 3.00) \][/tex]
Which simplifies to:
[tex]\[ -1.00, -0.50, 0.00, -0.50, 0.00, 0.50, 0.00, 0.50, 1.00 \][/tex]
Now, square each difference:
[tex]\[ (-1.00)^2, (-0.50)^2, (0.00)^2, (-0.50)^2, (0.00)^2, (0.50)^2, (0.00)^2, (0.50)^2, (1.00)^2 \][/tex]
Which gives us:
[tex]\[ 1.00, 0.25, 0.00, 0.25, 0.00, 0.25, 0.00, 0.25, 1.00 \][/tex]
Now, sum these squared differences:
[tex]\[ 1.00 + 0.25 + 0.00 + 0.25 + 0.00 + 0.25 + 0.00 + 0.25 + 1.00 = 3.00 \][/tex]
Now, divide by [tex]\(n\)[/tex]:
[tex]\[ \frac{3.00}{9} = 0.3333 \][/tex]
Finally, take the square root:
[tex]\[ \sigma_x = \sqrt{0.3333} \approx 0.577 \][/tex]
Rounded to two decimal places:
[tex]\[ \sigma_x \approx 0.58 \][/tex]
So, the mean of the sampling distribution of the sample mean [tex]\(\mu_x\)[/tex] is [tex]\(3.00\)[/tex] and the standard deviation of the sampling distribution of the sample mean [tex]\(\sigma_x\)[/tex] is [tex]\(0.58\)[/tex].
1. List the sample means:
We have the sample means given in the table:
- Sample 1: 2.00
- Sample 2: 2.50
- Sample 3: 3.00
- Sample 4: 2.50
- Sample 5: 3.00
- Sample 6: 3.50
- Sample 7: 3.00
- Sample 8: 3.50
- Sample 9: 4.00
2. Calculate the mean of the sample means ([tex]\(\mu_x\)[/tex]):
[tex]\[ \mu_x = \frac{\sum \bar{x}}{n} \][/tex]
[tex]\(\sum \bar{x}\)[/tex] is the sum of all sample means.
Calculate [tex]\(\sum \bar{x}\)[/tex]:
[tex]\[ 2.00 + 2.50 + 3.00 + 2.50 + 3.00 + 3.50 + 3.00 + 3.50 + 4.00 = 27.00 \][/tex]
Now, divide by the number of samples [tex]\(n = 9\)[/tex]:
[tex]\[ \mu_x = \frac{27.00}{9} = 3.00 \][/tex]
3. Calculate the standard deviation of the sample means ([tex]\(\sigma_x\)[/tex]):
[tex]\[ \sigma_x = \sqrt{\frac{\sum (\bar{x} - \mu_x)^2}{n}} \][/tex]
Where [tex]\(\sum (\bar{x} - \mu_x)^2\)[/tex] is the sum of the squared differences between each sample mean and [tex]\(\mu_x\)[/tex].
First, find each [tex]\(\bar{x} - \mu_x\)[/tex]:
[tex]\[ (2.00 - 3.00), (2.50 - 3.00), (3.00 - 3.00), (2.50 - 3.00), (3.00 - 3.00), (3.50 - 3.00), (3.00 - 3.00), (3.50 - 3.00), (4.00 - 3.00) \][/tex]
Which simplifies to:
[tex]\[ -1.00, -0.50, 0.00, -0.50, 0.00, 0.50, 0.00, 0.50, 1.00 \][/tex]
Now, square each difference:
[tex]\[ (-1.00)^2, (-0.50)^2, (0.00)^2, (-0.50)^2, (0.00)^2, (0.50)^2, (0.00)^2, (0.50)^2, (1.00)^2 \][/tex]
Which gives us:
[tex]\[ 1.00, 0.25, 0.00, 0.25, 0.00, 0.25, 0.00, 0.25, 1.00 \][/tex]
Now, sum these squared differences:
[tex]\[ 1.00 + 0.25 + 0.00 + 0.25 + 0.00 + 0.25 + 0.00 + 0.25 + 1.00 = 3.00 \][/tex]
Now, divide by [tex]\(n\)[/tex]:
[tex]\[ \frac{3.00}{9} = 0.3333 \][/tex]
Finally, take the square root:
[tex]\[ \sigma_x = \sqrt{0.3333} \approx 0.577 \][/tex]
Rounded to two decimal places:
[tex]\[ \sigma_x \approx 0.58 \][/tex]
So, the mean of the sampling distribution of the sample mean [tex]\(\mu_x\)[/tex] is [tex]\(3.00\)[/tex] and the standard deviation of the sampling distribution of the sample mean [tex]\(\sigma_x\)[/tex] is [tex]\(0.58\)[/tex].
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your questions find answers at IDNLearn.com. Thanks for visiting, and come back for more accurate and reliable solutions.