Find the best solutions to your problems with the help of IDNLearn.com's expert users. Join our interactive Q&A platform to receive prompt and accurate responses from experienced professionals in various fields.
Sagot :
To find the enthalpy of formation ([tex]\(\Delta H_f\)[/tex]) for [tex]\(O_2(g)\)[/tex], we'll follow these steps:
1. Write the balanced chemical equation:
[tex]\[ C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(l) \][/tex]
2. Understand the given enthalpies of formation:
[tex]\[ \Delta H_f \text{ for } C_6H_{12}O_6(s) = -1273.02 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_f \text{ for } CO_2(g) = -393.5 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_f \text{ for } H_2O(l) = -285.83 \, \text{kJ/mol} \][/tex]
3. Recall the enthalpy change for the reaction ([tex]\(\Delta H_{\text{reaction}}\)[/tex]) is calculated with the formula:
[tex]\[ \Delta H_{\text{reaction}} = \left( \sum \Delta H_f \text{ of products} \right) - \left( \sum \Delta H_f \text{ of reactants} \right) \][/tex]
4. Calculate the total enthalpy of the products:
[tex]\[ \Delta H_{\text{products}} = 6 \times \Delta H_f \text{ (CO}_2\text{)} + 6 \times \Delta H_f \text{ (H}_2\text{O)} \][/tex]
[tex]\[ \Delta H_{\text{products}} = 6 \times (-393.5 \, \text{kJ/mol}) + 6 \times (-285.83 \, \text{kJ/mol}) \][/tex]
[tex]\[ \Delta H_{\text{products}} = 6 \times (-393.5) + 6 \times (-285.83) \][/tex]
[tex]\[ \Delta H_{\text{products}} = -2361 \, \text{kJ/mol} + (-1714.98 \, \text{kJ/mol}) \][/tex]
[tex]\[ \Delta H_{\text{products}} = -4075.98 \, \text{kJ/mol} \][/tex]
5. Calculate the total enthalpy of the reactants:
[tex]\[ \Delta H_{\text{reactants}} = \Delta H_f \text{ (C}_6\text{H}_{12}\text{O}_6\text{)} + 6 \times \Delta H_f \text{ (O}_2\text{)} \][/tex]
Given that:
[tex]\[ \Delta H_f \text{ of O}_2\text{(g)} = 0 \text{ kJ/mol (by convention)} \][/tex]
[tex]\[ \Delta H_{\text{reactants}} = -1273.02 \, \text{kJ/mol} + 6 \times 0 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_{\text{reactants}} = -1273.02 \, \text{kJ/mol} \][/tex]
6. Now, calculate [tex]\(\Delta H_{\text{reaction}}\)[/tex]:
[tex]\[ \Delta H_{\text{reaction}} = \Delta H_{\text{products}} - \Delta H_{\text{reactants}} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -4075.98 \, \text{kJ/mol} - (-1273.02 \, \text{kJ/mol}) \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -4075.98 \, \text{kJ/mol} + 1273.02 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -2802.96 \, \text{kJ/mol} \][/tex]
Finally, since we are trying to find the [tex]\(\Delta H_f\)[/tex] for [tex]\(O_2(g)\)[/tex] and it's a standard convention that [tex]\(\Delta H_f\)[/tex] for [tex]\(O_2(g)\)[/tex] is exactly:
[tex]\[ \Delta H_f \text{ of } O_2(g) = 0 \text{ kJ/mol} \][/tex]
The answer to the question is [tex]\(0 \text{ kJ/mol}\)[/tex].
So, the correct answer is:
- exactly [tex]\(0 \text{ kJ/mol}\)[/tex].
1. Write the balanced chemical equation:
[tex]\[ C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(l) \][/tex]
2. Understand the given enthalpies of formation:
[tex]\[ \Delta H_f \text{ for } C_6H_{12}O_6(s) = -1273.02 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_f \text{ for } CO_2(g) = -393.5 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_f \text{ for } H_2O(l) = -285.83 \, \text{kJ/mol} \][/tex]
3. Recall the enthalpy change for the reaction ([tex]\(\Delta H_{\text{reaction}}\)[/tex]) is calculated with the formula:
[tex]\[ \Delta H_{\text{reaction}} = \left( \sum \Delta H_f \text{ of products} \right) - \left( \sum \Delta H_f \text{ of reactants} \right) \][/tex]
4. Calculate the total enthalpy of the products:
[tex]\[ \Delta H_{\text{products}} = 6 \times \Delta H_f \text{ (CO}_2\text{)} + 6 \times \Delta H_f \text{ (H}_2\text{O)} \][/tex]
[tex]\[ \Delta H_{\text{products}} = 6 \times (-393.5 \, \text{kJ/mol}) + 6 \times (-285.83 \, \text{kJ/mol}) \][/tex]
[tex]\[ \Delta H_{\text{products}} = 6 \times (-393.5) + 6 \times (-285.83) \][/tex]
[tex]\[ \Delta H_{\text{products}} = -2361 \, \text{kJ/mol} + (-1714.98 \, \text{kJ/mol}) \][/tex]
[tex]\[ \Delta H_{\text{products}} = -4075.98 \, \text{kJ/mol} \][/tex]
5. Calculate the total enthalpy of the reactants:
[tex]\[ \Delta H_{\text{reactants}} = \Delta H_f \text{ (C}_6\text{H}_{12}\text{O}_6\text{)} + 6 \times \Delta H_f \text{ (O}_2\text{)} \][/tex]
Given that:
[tex]\[ \Delta H_f \text{ of O}_2\text{(g)} = 0 \text{ kJ/mol (by convention)} \][/tex]
[tex]\[ \Delta H_{\text{reactants}} = -1273.02 \, \text{kJ/mol} + 6 \times 0 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_{\text{reactants}} = -1273.02 \, \text{kJ/mol} \][/tex]
6. Now, calculate [tex]\(\Delta H_{\text{reaction}}\)[/tex]:
[tex]\[ \Delta H_{\text{reaction}} = \Delta H_{\text{products}} - \Delta H_{\text{reactants}} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -4075.98 \, \text{kJ/mol} - (-1273.02 \, \text{kJ/mol}) \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -4075.98 \, \text{kJ/mol} + 1273.02 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -2802.96 \, \text{kJ/mol} \][/tex]
Finally, since we are trying to find the [tex]\(\Delta H_f\)[/tex] for [tex]\(O_2(g)\)[/tex] and it's a standard convention that [tex]\(\Delta H_f\)[/tex] for [tex]\(O_2(g)\)[/tex] is exactly:
[tex]\[ \Delta H_f \text{ of } O_2(g) = 0 \text{ kJ/mol} \][/tex]
The answer to the question is [tex]\(0 \text{ kJ/mol}\)[/tex].
So, the correct answer is:
- exactly [tex]\(0 \text{ kJ/mol}\)[/tex].
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and see you next time for more reliable information.