Get comprehensive solutions to your questions with the help of IDNLearn.com's experts. Discover the information you need from our experienced professionals who provide accurate and reliable answers to all your questions.
Sagot :
Let's use Cramer's rule to solve each of the given systems of linear equations step-by-step.
### Part (a)
The system of linear equations is:
[tex]\[ \begin{cases} 2x - 3y - z = 4 \\ x - 2y - z = 1 \\ x - y + 2z = 9 \end{cases} \][/tex]
We can represent this system in matrix form as [tex]\(AX = B\)[/tex], where:
[tex]\[ A = \begin{pmatrix} 2 & -3 & -1 \\ 1 & -2 & -1 \\ 1 & -1 & 2 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 4 \\ 1 \\ 9 \end{pmatrix} \][/tex]
To find [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex] using Cramer's rule, we first find the determinant of matrix [tex]\(A\)[/tex], denoted as [tex]\(\det(A)\)[/tex].
The determinants of matrices [tex]\(A_x\)[/tex], [tex]\(A_y\)[/tex], and [tex]\(A_z\)[/tex] are found by replacing the corresponding columns of [tex]\(A\)[/tex] with [tex]\(B\)[/tex]:
1. [tex]\(\det(A_x)\)[/tex]: Replace the first column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_x = \begin{pmatrix} 4 & -3 & -1 \\ 1 & -2 & -1 \\ 9 & -1 & 2 \end{pmatrix} \][/tex]
2. [tex]\(\det(A_y)\)[/tex]: Replace the second column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_y = \begin{pmatrix} 2 & 4 & -1 \\ 1 & 1 & -1 \\ 1 & 9 & 2 \end{pmatrix} \][/tex]
3. [tex]\(\det(A_z)\)[/tex]: Replace the third column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_z = \begin{pmatrix} 2 & -3 & 4 \\ 1 & -2 & 1 \\ 1 & -1 & 9 \end{pmatrix} \][/tex]
Next, the solutions for [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex] can be found by:
[tex]\[ x = \frac{\det(A_x)}{\det(A)}, \quad y = \frac{\det(A_y)}{\det(A)}, \quad z = \frac{\det(A_z)}{\det(A)} \][/tex]
By calculating the determinants, we get:
[tex]\[ x \approx 2, \quad y \approx -1, \quad z \approx 3 \][/tex]
### Part (b)
The system of linear equations is:
[tex]\[ \begin{cases} x + y - z = 1 \\ y + z = 2 \\ x - y = 0 \end{cases} \][/tex]
We can represent this system in matrix form as [tex]\(AX = B\)[/tex], where:
[tex]\[ A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \][/tex]
Finding the determinants for [tex]\(A_x\)[/tex], [tex]\(A_y\)[/tex], and [tex]\(A_z\)[/tex]:
1. [tex]\(\det(A_x)\)[/tex]: Replace the first column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_x = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 1 \\ 0 & -1 & 0 \end{pmatrix} \][/tex]
2. [tex]\(\det(A_y)\)[/tex]: Replace the second column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_y = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 1 \\ 1 & 0 & 0 \end{pmatrix} \][/tex]
3. [tex]\(\det(A_z)\)[/tex]: Replace the third column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_z = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & -1 & 0 \end{pmatrix} \][/tex]
By calculating the determinants, we find solutions:
[tex]\[ x = 1, \quad y = 1, \quad z = 1 \][/tex]
### Part (c)
The system of linear equations is:
[tex]\[ \begin{cases} 2x + 3y = 4 \\ 4y + 3x = -5 \\ 4x + z = 5 \end{cases} \][/tex]
We can represent this system in matrix form as [tex]\(AX = B\)[/tex], where:
[tex]\[ A = \begin{pmatrix} 2 & 3 & 0 \\ 3 & 4 & 0 \\ 4 & 0 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 4 \\ -5 \\ 5 \end{pmatrix} \][/tex]
Finding the determinants for [tex]\(A_x\)[/tex], [tex]\(A_y\)[/tex], and [tex]\(A_z\)[/tex]:
1. [tex]\(\det(A_x)\)[/tex]: Replace the first column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_x = \begin{pmatrix} 4 & 3 & 0 \\ -5 & 4 & 0 \\ 5 & 0 & 1 \end{pmatrix} \][/tex]
2. [tex]\(\det(A_y)\)[/tex]: Replace the second column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_y = \begin{pmatrix} 2 & 4 & 0 \\ 3 & -5 & 0 \\ 4 & 5 & 1 \end{pmatrix} \][/tex]
3. [tex]\(\det(A_z)\)[/tex]: Replace the third column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_z = \begin{pmatrix} 2 & 3 & 4 \\ 3 & 4 & -5 \\ 4 & 0 & 5 \end{pmatrix} \][/tex]
By calculating the determinants, we find solutions:
[tex]\[ x \approx -31, \quad y \approx 22, \quad z \approx 129 \][/tex]
Thus, the solutions to the systems of linear equations are:
- Part (a): [tex]\(x \approx 2\)[/tex], [tex]\(y \approx -1\)[/tex], [tex]\(z \approx 3\)[/tex]
- Part (b): [tex]\(x = 1\)[/tex], [tex]\(y = 1\)[/tex], [tex]\(z = 1\)[/tex]
- Part (c): [tex]\(x \approx -31\)[/tex], [tex]\(y \approx 22\)[/tex], [tex]\(z \approx 129\)[/tex]
### Part (a)
The system of linear equations is:
[tex]\[ \begin{cases} 2x - 3y - z = 4 \\ x - 2y - z = 1 \\ x - y + 2z = 9 \end{cases} \][/tex]
We can represent this system in matrix form as [tex]\(AX = B\)[/tex], where:
[tex]\[ A = \begin{pmatrix} 2 & -3 & -1 \\ 1 & -2 & -1 \\ 1 & -1 & 2 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 4 \\ 1 \\ 9 \end{pmatrix} \][/tex]
To find [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex] using Cramer's rule, we first find the determinant of matrix [tex]\(A\)[/tex], denoted as [tex]\(\det(A)\)[/tex].
The determinants of matrices [tex]\(A_x\)[/tex], [tex]\(A_y\)[/tex], and [tex]\(A_z\)[/tex] are found by replacing the corresponding columns of [tex]\(A\)[/tex] with [tex]\(B\)[/tex]:
1. [tex]\(\det(A_x)\)[/tex]: Replace the first column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_x = \begin{pmatrix} 4 & -3 & -1 \\ 1 & -2 & -1 \\ 9 & -1 & 2 \end{pmatrix} \][/tex]
2. [tex]\(\det(A_y)\)[/tex]: Replace the second column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_y = \begin{pmatrix} 2 & 4 & -1 \\ 1 & 1 & -1 \\ 1 & 9 & 2 \end{pmatrix} \][/tex]
3. [tex]\(\det(A_z)\)[/tex]: Replace the third column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_z = \begin{pmatrix} 2 & -3 & 4 \\ 1 & -2 & 1 \\ 1 & -1 & 9 \end{pmatrix} \][/tex]
Next, the solutions for [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex] can be found by:
[tex]\[ x = \frac{\det(A_x)}{\det(A)}, \quad y = \frac{\det(A_y)}{\det(A)}, \quad z = \frac{\det(A_z)}{\det(A)} \][/tex]
By calculating the determinants, we get:
[tex]\[ x \approx 2, \quad y \approx -1, \quad z \approx 3 \][/tex]
### Part (b)
The system of linear equations is:
[tex]\[ \begin{cases} x + y - z = 1 \\ y + z = 2 \\ x - y = 0 \end{cases} \][/tex]
We can represent this system in matrix form as [tex]\(AX = B\)[/tex], where:
[tex]\[ A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \][/tex]
Finding the determinants for [tex]\(A_x\)[/tex], [tex]\(A_y\)[/tex], and [tex]\(A_z\)[/tex]:
1. [tex]\(\det(A_x)\)[/tex]: Replace the first column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_x = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 1 \\ 0 & -1 & 0 \end{pmatrix} \][/tex]
2. [tex]\(\det(A_y)\)[/tex]: Replace the second column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_y = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 1 \\ 1 & 0 & 0 \end{pmatrix} \][/tex]
3. [tex]\(\det(A_z)\)[/tex]: Replace the third column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_z = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & -1 & 0 \end{pmatrix} \][/tex]
By calculating the determinants, we find solutions:
[tex]\[ x = 1, \quad y = 1, \quad z = 1 \][/tex]
### Part (c)
The system of linear equations is:
[tex]\[ \begin{cases} 2x + 3y = 4 \\ 4y + 3x = -5 \\ 4x + z = 5 \end{cases} \][/tex]
We can represent this system in matrix form as [tex]\(AX = B\)[/tex], where:
[tex]\[ A = \begin{pmatrix} 2 & 3 & 0 \\ 3 & 4 & 0 \\ 4 & 0 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 4 \\ -5 \\ 5 \end{pmatrix} \][/tex]
Finding the determinants for [tex]\(A_x\)[/tex], [tex]\(A_y\)[/tex], and [tex]\(A_z\)[/tex]:
1. [tex]\(\det(A_x)\)[/tex]: Replace the first column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_x = \begin{pmatrix} 4 & 3 & 0 \\ -5 & 4 & 0 \\ 5 & 0 & 1 \end{pmatrix} \][/tex]
2. [tex]\(\det(A_y)\)[/tex]: Replace the second column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_y = \begin{pmatrix} 2 & 4 & 0 \\ 3 & -5 & 0 \\ 4 & 5 & 1 \end{pmatrix} \][/tex]
3. [tex]\(\det(A_z)\)[/tex]: Replace the third column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_z = \begin{pmatrix} 2 & 3 & 4 \\ 3 & 4 & -5 \\ 4 & 0 & 5 \end{pmatrix} \][/tex]
By calculating the determinants, we find solutions:
[tex]\[ x \approx -31, \quad y \approx 22, \quad z \approx 129 \][/tex]
Thus, the solutions to the systems of linear equations are:
- Part (a): [tex]\(x \approx 2\)[/tex], [tex]\(y \approx -1\)[/tex], [tex]\(z \approx 3\)[/tex]
- Part (b): [tex]\(x = 1\)[/tex], [tex]\(y = 1\)[/tex], [tex]\(z = 1\)[/tex]
- Part (c): [tex]\(x \approx -31\)[/tex], [tex]\(y \approx 22\)[/tex], [tex]\(z \approx 129\)[/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Accurate answers are just a click away at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.