IDNLearn.com makes it easy to find accurate answers to your specific questions. Our platform provides prompt, accurate answers from experts ready to assist you with any question you may have.
Sagot :
To determine the enthalpy change for the given reaction, we need to use the formula:
[tex]\[ \Delta H_{reaction} = \sum \left(\Delta H_{f, \text{products}}\right) - \sum \left(\Delta H_{f, \text{reactants}}\right) \][/tex]
First, let us write down the enthalpies of formation for the substances involved in the reaction:
- Enthalpy of formation of [tex]\( NH_3 \)[/tex] [tex]\( (\Delta H_f(NH_3)) = -45.9 \, \text{kJ/mol} \)[/tex]
- Enthalpy of formation of [tex]\( H_2O \)[/tex] [tex]\( (\Delta H_f(H_2O)) = -241.8 \, \text{kJ/mol} \)[/tex]
- Enthalpy of formation of [tex]\( NO \)[/tex] [tex]\( (\Delta H_f(NO)) = 91.3 \, \text{kJ/mol} \)[/tex]
- Enthalpy of formation of [tex]\( O_2 \)[/tex] [tex]\( (\Delta H_f(O_2)) = 0 \, \text{kJ/mol} \)[/tex] (since [tex]\( O_2 \)[/tex] is a diatomic element in its standard state)
The given reaction is:
[tex]\[ 4 \, NH_3(g) + 5 \, O_2(g) \rightarrow 6 \, H_2O(g) + 4 \, NO(g) \][/tex]
Next, we calculate the sum of the enthalpies of formation for the products:
[tex]\[ \sum \left( \Delta H_{f, \text{products}} \right) = \left( 6 \times \Delta H_f(H_2O) \right) + \left( 4 \times \Delta H_f(NO) \right) \][/tex]
Substituting the values:
[tex]\[ \sum \left( \Delta H_{f, \text{products}} \right) = \left( 6 \times -241.8 \right) + \left( 4 \times 91.3 \right) \][/tex]
[tex]\[ \sum \left( \Delta H_{f, \text{products}} \right) = -1450.8 + 365.2 = -1085.6 \, \text{kJ} \][/tex]
Then, we calculate the sum of the enthalpies of formation for the reactants:
[tex]\[ \sum \left( \Delta H_{f, \text{reactants}} \right) = \left( 4 \times \Delta H_f(NH_3) \right) + \left( 5 \times \Delta H_f(O_2) \right) \][/tex]
Substituting the values:
[tex]\[ \sum \left( \Delta H_{f, \text{reactants}} \right) = \left( 4 \times -45.9 \right) + \left( 5 \times 0 \right) \][/tex]
[tex]\[ \sum \left( \Delta H_{f, \text{reactants}} \right) = -183.6 \, \text{kJ} \][/tex]
Finally, we find the enthalpy change of the reaction:
[tex]\[ \Delta H_{reaction} = \sum \left( \Delta H_{f, \text{products}} \right) - \sum \left( \Delta H_{f, \text{reactants}} \right) \][/tex]
Substituting the values:
[tex]\[ \Delta H_{reaction} = -1085.6 - (-183.6) \][/tex]
[tex]\[ \Delta H_{reaction} = -1085.6 + 183.6 = -902 \, \text{kJ} \][/tex]
Thus, the enthalpy change for the reaction is [tex]\(-902 \, \text{kJ}\)[/tex]. The correct answer is:
[tex]\[ \boxed{-902 \, \text{kJ}} \][/tex]
[tex]\[ \Delta H_{reaction} = \sum \left(\Delta H_{f, \text{products}}\right) - \sum \left(\Delta H_{f, \text{reactants}}\right) \][/tex]
First, let us write down the enthalpies of formation for the substances involved in the reaction:
- Enthalpy of formation of [tex]\( NH_3 \)[/tex] [tex]\( (\Delta H_f(NH_3)) = -45.9 \, \text{kJ/mol} \)[/tex]
- Enthalpy of formation of [tex]\( H_2O \)[/tex] [tex]\( (\Delta H_f(H_2O)) = -241.8 \, \text{kJ/mol} \)[/tex]
- Enthalpy of formation of [tex]\( NO \)[/tex] [tex]\( (\Delta H_f(NO)) = 91.3 \, \text{kJ/mol} \)[/tex]
- Enthalpy of formation of [tex]\( O_2 \)[/tex] [tex]\( (\Delta H_f(O_2)) = 0 \, \text{kJ/mol} \)[/tex] (since [tex]\( O_2 \)[/tex] is a diatomic element in its standard state)
The given reaction is:
[tex]\[ 4 \, NH_3(g) + 5 \, O_2(g) \rightarrow 6 \, H_2O(g) + 4 \, NO(g) \][/tex]
Next, we calculate the sum of the enthalpies of formation for the products:
[tex]\[ \sum \left( \Delta H_{f, \text{products}} \right) = \left( 6 \times \Delta H_f(H_2O) \right) + \left( 4 \times \Delta H_f(NO) \right) \][/tex]
Substituting the values:
[tex]\[ \sum \left( \Delta H_{f, \text{products}} \right) = \left( 6 \times -241.8 \right) + \left( 4 \times 91.3 \right) \][/tex]
[tex]\[ \sum \left( \Delta H_{f, \text{products}} \right) = -1450.8 + 365.2 = -1085.6 \, \text{kJ} \][/tex]
Then, we calculate the sum of the enthalpies of formation for the reactants:
[tex]\[ \sum \left( \Delta H_{f, \text{reactants}} \right) = \left( 4 \times \Delta H_f(NH_3) \right) + \left( 5 \times \Delta H_f(O_2) \right) \][/tex]
Substituting the values:
[tex]\[ \sum \left( \Delta H_{f, \text{reactants}} \right) = \left( 4 \times -45.9 \right) + \left( 5 \times 0 \right) \][/tex]
[tex]\[ \sum \left( \Delta H_{f, \text{reactants}} \right) = -183.6 \, \text{kJ} \][/tex]
Finally, we find the enthalpy change of the reaction:
[tex]\[ \Delta H_{reaction} = \sum \left( \Delta H_{f, \text{products}} \right) - \sum \left( \Delta H_{f, \text{reactants}} \right) \][/tex]
Substituting the values:
[tex]\[ \Delta H_{reaction} = -1085.6 - (-183.6) \][/tex]
[tex]\[ \Delta H_{reaction} = -1085.6 + 183.6 = -902 \, \text{kJ} \][/tex]
Thus, the enthalpy change for the reaction is [tex]\(-902 \, \text{kJ}\)[/tex]. The correct answer is:
[tex]\[ \boxed{-902 \, \text{kJ}} \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.