From everyday questions to specialized queries, IDNLearn.com has the answers. Ask your questions and receive reliable and comprehensive answers from our dedicated community of professionals.

Consider the reaction of glucose with oxygen:
[tex]\[C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(l)\][/tex]

The enthalpy of formation [tex]\(\left(\Delta H_f\right)\)[/tex] for [tex]\(C_6H_{12}O_6(s)\)[/tex] is [tex]\(-1,273.02 \, \text{kJ/mol}\)[/tex], [tex]\(\Delta H_f\)[/tex] for [tex]\(CO_2(g)\)[/tex] is [tex]\(-393.5 \, \text{kJ/mol}\)[/tex], and [tex]\(\Delta H_f\)[/tex] for [tex]\(H_2O(l)\)[/tex] is [tex]\(-285.83 \, \text{kJ/mol}\)[/tex].

What is [tex]\(\Delta H_f\)[/tex] for [tex]\(O_2(g)\)[/tex]?

A. Exactly [tex]\(0 \, \text{kJ/mol}\)[/tex]

B. [tex]\(108 \, \text{kJ/mol}\)[/tex]

C. There is no way to know.


Sagot :

To determine the enthalpy of formation ([tex]\(\Delta H_f\)[/tex]) for [tex]\(O_2(g)\)[/tex] in the given reaction, let's go through the steps systematically.

### Given
- Enthalpy of formation of glucose ([tex]\(C_6H_{12}O_6(s)\)[/tex]) = [tex]\(-1273.02 \, \text{kJ/mol}\)[/tex]
- Enthalpy of formation of carbon dioxide ([tex]\(CO_2(g)\)[/tex]) = [tex]\(-393.5 \, \text{kJ/mol}\)[/tex]
- Enthalpy of formation of water ([tex]\(H_2O(l)\)[/tex]) = [tex]\(-285.83 \, \text{kJ/mol}\)[/tex]

The reaction is:
[tex]\[ C_6H_{12}O_6(s) + 6 O_2(g) \rightarrow 6 CO_2(g) + 6 H_2O(l) \][/tex]

### Formula
The enthalpy change of the reaction ([tex]\(\Delta H_{reaction}\)[/tex]) can be calculated using the formula:
[tex]\[ \Delta H_{reaction} = \sum \Delta H_f(\text{products}) - \sum \Delta H_f(\text{reactants}) \][/tex]

### Breakdown
For the given reaction:

Products:
- 6 moles of [tex]\(CO_2(g)\)[/tex]
- 6 moles of [tex]\(H_2O(l)\)[/tex]

Reactants:
- 1 mole of [tex]\(C_6H_{12}O_6(s)\)[/tex]
- 6 moles of [tex]\(O_2(g)\)[/tex]

### Calculation

Let's use the formula to find [tex]\(\Delta H_{reaction}\)[/tex]:

Step 1: Calculate [tex]\(\sum \Delta H_f(\text{products})\)[/tex]:
[tex]\[ \sum \Delta H_f(\text{products}) = 6 \times \Delta H_f(CO_2(g)) + 6 \times \Delta H_f(H_2O(l)) \][/tex]
[tex]\[ \sum \Delta H_f(\text{products}) = 6 \times (-393.5 \, \text{kJ/mol}) + 6 \times (-285.83 \, \text{kJ/mol}) \][/tex]
[tex]\[ \sum \Delta H_f(\text{products}) = -2361 \, \text{kJ} + (-1714.98 \, \text{kJ}) \][/tex]
[tex]\[ \sum \Delta H_f(\text{products}) = -4075.98 \, \text{kJ/mol} \][/tex]

Step 2: Calculate [tex]\(\sum \Delta H_f(\text{reactants})\)[/tex]:
[tex]\[ \sum \Delta H_f(\text{reactants}) = \Delta H_f(C_6H_{12}O_6(s)) + 6 \times \Delta H_f(O_2(g)) \][/tex]
[tex]\[ \sum \Delta H_f(\text{reactants}) = -1273.02 \, \text{kJ/mol} + 6 \times \Delta H_f(O_2(g)) \][/tex]

Using the fact that elemental oxygen ([tex]\(O_2(g)\)[/tex]) in its standard state has an enthalpy of formation of [tex]\(0 \, \text{kJ/mol}\)[/tex]:

### Conclusion
Therefore, the enthalpy of formation [tex]\(\Delta H_f\)[/tex] for [tex]\(O_2(g)\)[/tex] is:
[tex]\[ \Delta H_f(O_2(g)) = 0 \, \text{kJ/mol} \][/tex]

Hence, the correct answer is:
- [tex]\(\boxed{0 \, \text{kJ/mol}}\)[/tex]