Engage with knowledgeable experts and get accurate answers on IDNLearn.com. Ask anything and get well-informed, reliable answers from our knowledgeable community members.
Sagot :
Let's determine the correct position for point [tex]\( H \)[/tex] that ensures Alex uses no more than 20 units of fencing by considering the given points and the available fencing.
First, calculate the distances between the given points [tex]\( E \)[/tex], [tex]\( F \)[/tex], and [tex]\( G \)[/tex]:
1. Distance [tex]\( EF \)[/tex] between [tex]\( E(0, 5) \)[/tex] and [tex]\( F(5, 5) \)[/tex]:
[tex]\[ EF = \sqrt{(5 - 0)^2 + (5 - 5)^2} = \sqrt{5^2 + 0^2} = \sqrt{25} = 5 \text{ units} \][/tex]
2. Distance [tex]\( FG \)[/tex] between [tex]\( F(5, 5) \)[/tex] and [tex]\( G(1, 1) \)[/tex]:
[tex]\[ FG = \sqrt{(1 - 5)^2 + (1 - 5)^2} = \sqrt{(-4)^2 + (-4)^2} = \sqrt{16 + 16} = \sqrt{32} = 4\sqrt{2} \text{ units} \][/tex]
3. Distance [tex]\( GE \)[/tex] between [tex]\( G(1, 1) \)[/tex] and [tex]\( E(0, 5) \)[/tex]:
[tex]\[ GE = \sqrt{(0 - 1)^2 + (5 - 1)^2} = \sqrt{(-1)^2 + 4^2} = \sqrt{1 + 16} = \sqrt{17} \text{ units} \][/tex]
Next, calculate the total fencing used by summing these distances:
[tex]\[ \text{Total fencing used} = EF + FG + GE = 5 + 4\sqrt{2} + \sqrt{17} \][/tex]
Given that Alex has 20 units of fencing, the remaining fencing available for the fourth side [tex]\( GH \)[/tex] is:
[tex]\[ \text{Remaining fencing} = 20 - (5 + 4\sqrt{2} + \sqrt{17}) \][/tex]
To decide where point [tex]\( H \)[/tex] could be placed, we evaluate the distances from point [tex]\( G \)[/tex] to each of the four potential points for [tex]\( H \)[/tex]:
1. Distance [tex]\( GH1 \)[/tex] between [tex]\( G (1, 1) \)[/tex] and [tex]\( H1 (-3, 1) \)[/tex]:
[tex]\[ GH1 = \sqrt{(-3 - 1)^2 + (1 - 1)^2} = \sqrt{(-4)^2 + 0^2} = \sqrt{16} = 4 \text{ units} \][/tex]
2. Distance [tex]\( GH2 \)[/tex] between [tex]\( G (1, 1) \)[/tex] and [tex]\( H2 (-3, -1) \)[/tex]:
[tex]\[ GH2 = \sqrt{(-3 - 1)^2 + (-1 - 1)^2} = \sqrt{(-4)^2 + (-2)^2} = \sqrt{16 + 4} = \sqrt{20} = 2\sqrt{5} \text{ units} \][/tex]
3. Distance [tex]\( GH3 \)[/tex] between [tex]\( G (1, 1) \)[/tex] and [tex]\( H3 (-5, 1) \)[/tex]:
[tex]\[ GH3 = \sqrt{(-5 - 1)^2 + (1 - 1)^2} = \sqrt{(-6)^2 + 0^2} = \sqrt{36} = 6 \text{ units} \][/tex]
4. Distance [tex]\( GH4 \)[/tex] between [tex]\( G (1, 1) \)[/tex] and [tex]\( H4 (-5, -1) \)[/tex]:
[tex]\[ GH4 = \sqrt{(-5 - 1)^2 + (-1 - 1)^2} = \sqrt{(-6)^2 + (-2)^2} = \sqrt{36 + 4} = \sqrt{40} = 2\sqrt{10} \text{ units} \][/tex]
Now, check which of these distances for points [tex]\( H1, H2, H3, H4 \)[/tex] satisfies the remaining fencing condition:
[tex]\[ 4 \leq \text{remaining fencing} \][/tex]
After checking the distances, it turns out that:
[tex]\[ GH1 = 4 \text{ units} \][/tex]
Thus, point [tex]\( H \)[/tex] could be placed at [tex]\( (-3,1) \)[/tex] so that Alex does not have to buy more fencing. Therefore, the correct answer is:
[tex]\[ \boxed{(-3, 1)} \][/tex]
First, calculate the distances between the given points [tex]\( E \)[/tex], [tex]\( F \)[/tex], and [tex]\( G \)[/tex]:
1. Distance [tex]\( EF \)[/tex] between [tex]\( E(0, 5) \)[/tex] and [tex]\( F(5, 5) \)[/tex]:
[tex]\[ EF = \sqrt{(5 - 0)^2 + (5 - 5)^2} = \sqrt{5^2 + 0^2} = \sqrt{25} = 5 \text{ units} \][/tex]
2. Distance [tex]\( FG \)[/tex] between [tex]\( F(5, 5) \)[/tex] and [tex]\( G(1, 1) \)[/tex]:
[tex]\[ FG = \sqrt{(1 - 5)^2 + (1 - 5)^2} = \sqrt{(-4)^2 + (-4)^2} = \sqrt{16 + 16} = \sqrt{32} = 4\sqrt{2} \text{ units} \][/tex]
3. Distance [tex]\( GE \)[/tex] between [tex]\( G(1, 1) \)[/tex] and [tex]\( E(0, 5) \)[/tex]:
[tex]\[ GE = \sqrt{(0 - 1)^2 + (5 - 1)^2} = \sqrt{(-1)^2 + 4^2} = \sqrt{1 + 16} = \sqrt{17} \text{ units} \][/tex]
Next, calculate the total fencing used by summing these distances:
[tex]\[ \text{Total fencing used} = EF + FG + GE = 5 + 4\sqrt{2} + \sqrt{17} \][/tex]
Given that Alex has 20 units of fencing, the remaining fencing available for the fourth side [tex]\( GH \)[/tex] is:
[tex]\[ \text{Remaining fencing} = 20 - (5 + 4\sqrt{2} + \sqrt{17}) \][/tex]
To decide where point [tex]\( H \)[/tex] could be placed, we evaluate the distances from point [tex]\( G \)[/tex] to each of the four potential points for [tex]\( H \)[/tex]:
1. Distance [tex]\( GH1 \)[/tex] between [tex]\( G (1, 1) \)[/tex] and [tex]\( H1 (-3, 1) \)[/tex]:
[tex]\[ GH1 = \sqrt{(-3 - 1)^2 + (1 - 1)^2} = \sqrt{(-4)^2 + 0^2} = \sqrt{16} = 4 \text{ units} \][/tex]
2. Distance [tex]\( GH2 \)[/tex] between [tex]\( G (1, 1) \)[/tex] and [tex]\( H2 (-3, -1) \)[/tex]:
[tex]\[ GH2 = \sqrt{(-3 - 1)^2 + (-1 - 1)^2} = \sqrt{(-4)^2 + (-2)^2} = \sqrt{16 + 4} = \sqrt{20} = 2\sqrt{5} \text{ units} \][/tex]
3. Distance [tex]\( GH3 \)[/tex] between [tex]\( G (1, 1) \)[/tex] and [tex]\( H3 (-5, 1) \)[/tex]:
[tex]\[ GH3 = \sqrt{(-5 - 1)^2 + (1 - 1)^2} = \sqrt{(-6)^2 + 0^2} = \sqrt{36} = 6 \text{ units} \][/tex]
4. Distance [tex]\( GH4 \)[/tex] between [tex]\( G (1, 1) \)[/tex] and [tex]\( H4 (-5, -1) \)[/tex]:
[tex]\[ GH4 = \sqrt{(-5 - 1)^2 + (-1 - 1)^2} = \sqrt{(-6)^2 + (-2)^2} = \sqrt{36 + 4} = \sqrt{40} = 2\sqrt{10} \text{ units} \][/tex]
Now, check which of these distances for points [tex]\( H1, H2, H3, H4 \)[/tex] satisfies the remaining fencing condition:
[tex]\[ 4 \leq \text{remaining fencing} \][/tex]
After checking the distances, it turns out that:
[tex]\[ GH1 = 4 \text{ units} \][/tex]
Thus, point [tex]\( H \)[/tex] could be placed at [tex]\( (-3,1) \)[/tex] so that Alex does not have to buy more fencing. Therefore, the correct answer is:
[tex]\[ \boxed{(-3, 1)} \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. For dependable and accurate answers, visit IDNLearn.com. Thanks for visiting, and see you next time for more helpful information.