Experience the power of community-driven knowledge on IDNLearn.com. Discover in-depth answers to your questions from our community of experienced professionals.
Sagot :
To determine whether the equation [tex]\( x^2 + y^9 = 4 \)[/tex] defines [tex]\( y \)[/tex] as a function of [tex]\( x \)[/tex], we first need to express [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex].
### Step 1: Solve the equation for [tex]\( y \)[/tex]
We start with the given equation:
[tex]\[ x^2 + y^9 = 4 \][/tex]
To isolate [tex]\( y^9 \)[/tex], we subtract [tex]\( x^2 \)[/tex] from both sides:
[tex]\[ y^9 = 4 - x^2 \][/tex]
Next, we solve for [tex]\( y \)[/tex] by taking the ninth root of both sides. This yields:
[tex]\[ y = \sqrt[9]{4 - x^2} \][/tex]
### Step 2: Consider the nature of the solutions
The equation [tex]\( y^9 = 4 - x^2 \)[/tex] implies that there are potentially multiple ninth roots for a given input [tex]\( x \)[/tex].
### Step 3: List the possible solutions for [tex]\( y \)[/tex]
The ninth root of a number can have multiple complex solutions. Specifically, for [tex]\( y = \sqrt[9]{4 - x^2} \)[/tex], the roots are:
1. [tex]\( y = (4 - x^2)^{1/9} \)[/tex]
2. [tex]\( y = -(4 - x^2)^{1/9} \cdot \cos(\pi/9) - i(4 - x^2)^{1/9} \cdot \sin(\pi/9) \)[/tex]
3. [tex]\( y = -(4 - x^2)^{1/9} \cdot \cos(\pi/9) + i(4 - x^2)^{1/9} \cdot \sin(\pi/9) \)[/tex]
4. [tex]\( y = (4 - x^2)^{1/9} \cdot \cos(2\pi/9) - i(4 - x^2)^{1/9} \cdot \sin(2\pi/9) \)[/tex]
5. [tex]\( y = (4 - x^2)^{1/9} \cdot \cos(2\pi/9) + i(4 - x^2)^{1/9} \cdot \sin(2\pi/9) \)[/tex]
6. [tex]\( y = (4 - x^2)^{1/9} \cdot \cos(4\pi/9) - i(4 - x^2)^{1/9} \cdot \sin(4\pi/9) \)[/tex]
7. [tex]\( y = (4 - x^2)^{1/9} \cdot \cos(4\pi/9) + i(4 - x^2)^{1/9} \cdot \sin(4\pi/9) \)[/tex]
8. [tex]\( y = -(4 - x^2)^{1/9} / 2 - i\sqrt{3}(4 - x^2)^{1/9} / 2 \)[/tex]
9. [tex]\( y = -(4 - x^2)^{1/9} / 2 + i\sqrt{3}(4 - x^2)^{1/9} / 2 \)[/tex]
### Step 4: Determine if [tex]\( y \)[/tex] is uniquely determined for a given [tex]\( x \)[/tex]
For [tex]\( y \)[/tex] to be a function of [tex]\( x \)[/tex], each input [tex]\( x \)[/tex] must correspond to exactly one output [tex]\( y \)[/tex]. From the list above, it is clear there are multiple possible values for [tex]\( y \)[/tex] for a given [tex]\( x \)[/tex].
### Conclusion
Since there are multiple solutions for [tex]\( y \)[/tex] for each value of [tex]\( x \)[/tex], the equation [tex]\( x^2 + y^9 = 4 \)[/tex] does not define [tex]\( y \)[/tex] as a function of [tex]\( x \)[/tex].
Correct Answer: The equation does not define [tex]\( y \)[/tex] as a function of [tex]\( x \)[/tex].
### Step 1: Solve the equation for [tex]\( y \)[/tex]
We start with the given equation:
[tex]\[ x^2 + y^9 = 4 \][/tex]
To isolate [tex]\( y^9 \)[/tex], we subtract [tex]\( x^2 \)[/tex] from both sides:
[tex]\[ y^9 = 4 - x^2 \][/tex]
Next, we solve for [tex]\( y \)[/tex] by taking the ninth root of both sides. This yields:
[tex]\[ y = \sqrt[9]{4 - x^2} \][/tex]
### Step 2: Consider the nature of the solutions
The equation [tex]\( y^9 = 4 - x^2 \)[/tex] implies that there are potentially multiple ninth roots for a given input [tex]\( x \)[/tex].
### Step 3: List the possible solutions for [tex]\( y \)[/tex]
The ninth root of a number can have multiple complex solutions. Specifically, for [tex]\( y = \sqrt[9]{4 - x^2} \)[/tex], the roots are:
1. [tex]\( y = (4 - x^2)^{1/9} \)[/tex]
2. [tex]\( y = -(4 - x^2)^{1/9} \cdot \cos(\pi/9) - i(4 - x^2)^{1/9} \cdot \sin(\pi/9) \)[/tex]
3. [tex]\( y = -(4 - x^2)^{1/9} \cdot \cos(\pi/9) + i(4 - x^2)^{1/9} \cdot \sin(\pi/9) \)[/tex]
4. [tex]\( y = (4 - x^2)^{1/9} \cdot \cos(2\pi/9) - i(4 - x^2)^{1/9} \cdot \sin(2\pi/9) \)[/tex]
5. [tex]\( y = (4 - x^2)^{1/9} \cdot \cos(2\pi/9) + i(4 - x^2)^{1/9} \cdot \sin(2\pi/9) \)[/tex]
6. [tex]\( y = (4 - x^2)^{1/9} \cdot \cos(4\pi/9) - i(4 - x^2)^{1/9} \cdot \sin(4\pi/9) \)[/tex]
7. [tex]\( y = (4 - x^2)^{1/9} \cdot \cos(4\pi/9) + i(4 - x^2)^{1/9} \cdot \sin(4\pi/9) \)[/tex]
8. [tex]\( y = -(4 - x^2)^{1/9} / 2 - i\sqrt{3}(4 - x^2)^{1/9} / 2 \)[/tex]
9. [tex]\( y = -(4 - x^2)^{1/9} / 2 + i\sqrt{3}(4 - x^2)^{1/9} / 2 \)[/tex]
### Step 4: Determine if [tex]\( y \)[/tex] is uniquely determined for a given [tex]\( x \)[/tex]
For [tex]\( y \)[/tex] to be a function of [tex]\( x \)[/tex], each input [tex]\( x \)[/tex] must correspond to exactly one output [tex]\( y \)[/tex]. From the list above, it is clear there are multiple possible values for [tex]\( y \)[/tex] for a given [tex]\( x \)[/tex].
### Conclusion
Since there are multiple solutions for [tex]\( y \)[/tex] for each value of [tex]\( x \)[/tex], the equation [tex]\( x^2 + y^9 = 4 \)[/tex] does not define [tex]\( y \)[/tex] as a function of [tex]\( x \)[/tex].
Correct Answer: The equation does not define [tex]\( y \)[/tex] as a function of [tex]\( x \)[/tex].
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Your questions find clarity at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.