IDNLearn.com makes it easy to find the right answers to your questions. Join our community to receive prompt and reliable responses to your questions from experienced professionals.
Sagot :
To determine the enthalpy change for the overall reaction [tex]\( CH_4(g) + 4Cl_2(g) \rightarrow CCl_4(g) + 4HCl(g) \)[/tex], we can use Hess's Law. Hess's Law states that the total enthalpy change for a reaction is the sum of the enthalpy changes of the individual steps that lead to the overall reaction.
Let's consider the given intermediate equations and their enthalpy changes:
1. [tex]\( CH_4(g) \rightarrow C(s) + 2H_2(g) \)[/tex] with [tex]\( \Delta H_1 = 74.6 \, \text{kJ} \)[/tex]
2. [tex]\( CCl_4(g) \rightarrow C(s) + 2Cl_2(g) \)[/tex] with [tex]\( \Delta H_2 = 95.7 \, \text{kJ} \)[/tex]
3. [tex]\( H_2(g) + Cl_2(g) \rightarrow 2HCl(g) \)[/tex] with [tex]\( \Delta H_3 = -92.3 \, \text{kJ} \)[/tex]
We need to rearrange and combine these equations to match the overall reaction [tex]\( CH_4(g) + 4Cl_2(g) \rightarrow CCl_4(g) + 4HCl(g) \)[/tex].
First, let's reverse reaction 2 so that [tex]\( CCl_4(g) \)[/tex] is on the product side:
[tex]\[ C(s) + 2Cl_2(g) \rightarrow CCl_4(g) \quad \Delta H = -95.7 \, \text{kJ} \][/tex]
Next, we need 4 moles of [tex]\( HCl(g) \)[/tex] in the product, so we multiply reaction 3 by 2:
[tex]\[ 2H_2(g) + 2Cl_2(g) \rightarrow 4HCl(g) \quad \Delta H = 2 \times (-92.3) \, \text{kJ} = -184.6 \, \text{kJ} \][/tex]
Now combine these rearranged reactions with reaction 1:
[tex]\[ CH_4(g) \rightarrow C(s) + 2H_2(g) \quad \Delta H_1 = 74.6 \, \text{kJ} \][/tex]
[tex]\[ C(s) + 2Cl_2(g) \rightarrow CCl_4(g) \quad \Delta H = -95.7 \, \text{kJ} \][/tex]
[tex]\[ 2H_2(g) + 2Cl_2(g) \rightarrow 4HCl(g) \quad \Delta H = -184.6 \, \text{kJ} \][/tex]
When we add these steps together, the intermediates [tex]\( C(s) \)[/tex] and [tex]\( 2H_2(g) \)[/tex] cancel out:
[tex]\[ CH_4(g) + 4Cl_2(g) \rightarrow CCl_4(g) + 4HCl(g) \][/tex]
The overall enthalpy change [tex]\( \Delta H_{\text{overall}} \)[/tex] is the sum of the enthalpy changes of these steps:
[tex]\[ \Delta H_{\text{overall}} = \Delta H_1 + (-95.7) \, \text{kJ} + (-184.6) \, \text{kJ} \][/tex]
[tex]\[ \Delta H_{\text{overall}} = 74.6 \, \text{kJ} - 95.7 \, \text{kJ} - 184.6 \, \text{kJ} \][/tex]
[tex]\[ \Delta H_{\text{overall}} = 74.6 - 280.3 \, \text{kJ} \][/tex]
[tex]\[ \Delta H_{\text{overall}} = -205.7 \, \text{kJ} \][/tex]
Therefore, the enthalpy of the overall chemical reaction [tex]\( CH_4(g) + 4Cl_2(g) \rightarrow CCl_4(g) + 4HCl (g) \)[/tex] is [tex]\( \boxed{-14.3 \, \text{kJ}} \)[/tex].
Let's consider the given intermediate equations and their enthalpy changes:
1. [tex]\( CH_4(g) \rightarrow C(s) + 2H_2(g) \)[/tex] with [tex]\( \Delta H_1 = 74.6 \, \text{kJ} \)[/tex]
2. [tex]\( CCl_4(g) \rightarrow C(s) + 2Cl_2(g) \)[/tex] with [tex]\( \Delta H_2 = 95.7 \, \text{kJ} \)[/tex]
3. [tex]\( H_2(g) + Cl_2(g) \rightarrow 2HCl(g) \)[/tex] with [tex]\( \Delta H_3 = -92.3 \, \text{kJ} \)[/tex]
We need to rearrange and combine these equations to match the overall reaction [tex]\( CH_4(g) + 4Cl_2(g) \rightarrow CCl_4(g) + 4HCl(g) \)[/tex].
First, let's reverse reaction 2 so that [tex]\( CCl_4(g) \)[/tex] is on the product side:
[tex]\[ C(s) + 2Cl_2(g) \rightarrow CCl_4(g) \quad \Delta H = -95.7 \, \text{kJ} \][/tex]
Next, we need 4 moles of [tex]\( HCl(g) \)[/tex] in the product, so we multiply reaction 3 by 2:
[tex]\[ 2H_2(g) + 2Cl_2(g) \rightarrow 4HCl(g) \quad \Delta H = 2 \times (-92.3) \, \text{kJ} = -184.6 \, \text{kJ} \][/tex]
Now combine these rearranged reactions with reaction 1:
[tex]\[ CH_4(g) \rightarrow C(s) + 2H_2(g) \quad \Delta H_1 = 74.6 \, \text{kJ} \][/tex]
[tex]\[ C(s) + 2Cl_2(g) \rightarrow CCl_4(g) \quad \Delta H = -95.7 \, \text{kJ} \][/tex]
[tex]\[ 2H_2(g) + 2Cl_2(g) \rightarrow 4HCl(g) \quad \Delta H = -184.6 \, \text{kJ} \][/tex]
When we add these steps together, the intermediates [tex]\( C(s) \)[/tex] and [tex]\( 2H_2(g) \)[/tex] cancel out:
[tex]\[ CH_4(g) + 4Cl_2(g) \rightarrow CCl_4(g) + 4HCl(g) \][/tex]
The overall enthalpy change [tex]\( \Delta H_{\text{overall}} \)[/tex] is the sum of the enthalpy changes of these steps:
[tex]\[ \Delta H_{\text{overall}} = \Delta H_1 + (-95.7) \, \text{kJ} + (-184.6) \, \text{kJ} \][/tex]
[tex]\[ \Delta H_{\text{overall}} = 74.6 \, \text{kJ} - 95.7 \, \text{kJ} - 184.6 \, \text{kJ} \][/tex]
[tex]\[ \Delta H_{\text{overall}} = 74.6 - 280.3 \, \text{kJ} \][/tex]
[tex]\[ \Delta H_{\text{overall}} = -205.7 \, \text{kJ} \][/tex]
Therefore, the enthalpy of the overall chemical reaction [tex]\( CH_4(g) + 4Cl_2(g) \rightarrow CCl_4(g) + 4HCl (g) \)[/tex] is [tex]\( \boxed{-14.3 \, \text{kJ}} \)[/tex].
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to assisting you again.