Get personalized answers to your unique questions on IDNLearn.com. Our platform is designed to provide accurate and comprehensive answers to any questions you may have.
Sagot :
To find the coordinates of the terminal point for the angle [tex]\( t = \frac{10 \pi}{3} \)[/tex], we can proceed with a step-by-step approach:
1. Normalize the Angle:
The angle given is [tex]\( \frac{10 \pi}{3} \)[/tex], which is greater than [tex]\( 2\pi \)[/tex]. To determine the equivalent angle within one full circle (between [tex]\(0\)[/tex] and [tex]\(2\pi\)[/tex]), we need to reduce this angle by subtracting multiples of [tex]\(2\pi\)[/tex].
[tex]\[ \frac{10\pi}{3} \mod 2\pi = \frac{10\pi}{3} - 2\pi \left\lfloor \frac{\frac{10\pi}{3}}{2\pi} \right\rfloor \][/tex]
First, we calculate the integer part of [tex]\( \frac{\frac{10\pi}{3}}{2\pi} \)[/tex]:
[tex]\[ \frac{10\pi}{3} \div 2\pi = \frac{10\pi}{3} \cdot \frac{1}{2\pi} = \frac{10}{6} = \frac{5}{3} \approx 1.6667 \][/tex]
So, the integer part is [tex]\(1\)[/tex]. Now we subtract this from the original angle:
[tex]\[ \frac{10\pi}{3} - 2\pi \times 1 = \frac{10\pi}{3} - \frac{6\pi}{3} = \frac{4\pi}{3} \][/tex]
2. Calculate Coordinates:
The reduced angle is [tex]\( \frac{4\pi}{3} \)[/tex], and now, we need to find the [tex]\((x, y)\)[/tex] coordinates on the unit circle for this angle. The unit circle coordinates for any angle [tex]\( t \)[/tex] are given by:
[tex]\[ x = \cos(t) \][/tex]
[tex]\[ y = \sin(t) \][/tex]
For [tex]\( t = \frac{4\pi}{3} \)[/tex]:
[tex]\[ \cos(\frac{4\pi}{3}) \approx -0.5 \][/tex]
[tex]\[ \sin(\frac{4\pi}{3}) \approx -\frac{\sqrt{3}}{2} \][/tex]
Therefore, the coordinates of the terminal point for [tex]\( t = \frac{10 \pi}{3} \)[/tex] are:
[tex]\[ \left(-0.5, -\frac{\sqrt{3}}{2}\right) \][/tex]
3. Conclusion:
The coordinates of the terminal point are [tex]\(\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)\)[/tex], which corresponds to option
[tex]\[ \boxed{\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)} \][/tex]
1. Normalize the Angle:
The angle given is [tex]\( \frac{10 \pi}{3} \)[/tex], which is greater than [tex]\( 2\pi \)[/tex]. To determine the equivalent angle within one full circle (between [tex]\(0\)[/tex] and [tex]\(2\pi\)[/tex]), we need to reduce this angle by subtracting multiples of [tex]\(2\pi\)[/tex].
[tex]\[ \frac{10\pi}{3} \mod 2\pi = \frac{10\pi}{3} - 2\pi \left\lfloor \frac{\frac{10\pi}{3}}{2\pi} \right\rfloor \][/tex]
First, we calculate the integer part of [tex]\( \frac{\frac{10\pi}{3}}{2\pi} \)[/tex]:
[tex]\[ \frac{10\pi}{3} \div 2\pi = \frac{10\pi}{3} \cdot \frac{1}{2\pi} = \frac{10}{6} = \frac{5}{3} \approx 1.6667 \][/tex]
So, the integer part is [tex]\(1\)[/tex]. Now we subtract this from the original angle:
[tex]\[ \frac{10\pi}{3} - 2\pi \times 1 = \frac{10\pi}{3} - \frac{6\pi}{3} = \frac{4\pi}{3} \][/tex]
2. Calculate Coordinates:
The reduced angle is [tex]\( \frac{4\pi}{3} \)[/tex], and now, we need to find the [tex]\((x, y)\)[/tex] coordinates on the unit circle for this angle. The unit circle coordinates for any angle [tex]\( t \)[/tex] are given by:
[tex]\[ x = \cos(t) \][/tex]
[tex]\[ y = \sin(t) \][/tex]
For [tex]\( t = \frac{4\pi}{3} \)[/tex]:
[tex]\[ \cos(\frac{4\pi}{3}) \approx -0.5 \][/tex]
[tex]\[ \sin(\frac{4\pi}{3}) \approx -\frac{\sqrt{3}}{2} \][/tex]
Therefore, the coordinates of the terminal point for [tex]\( t = \frac{10 \pi}{3} \)[/tex] are:
[tex]\[ \left(-0.5, -\frac{\sqrt{3}}{2}\right) \][/tex]
3. Conclusion:
The coordinates of the terminal point are [tex]\(\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)\)[/tex], which corresponds to option
[tex]\[ \boxed{\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)} \][/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Your search for solutions ends at IDNLearn.com. Thank you for visiting, and we look forward to helping you again.