IDNLearn.com is your reliable source for expert answers and community insights. Our community is here to provide detailed and trustworthy answers to any questions you may have.

1. Calculate the mass of oxalic acid dihydrate ([tex]C_2H_2O_4 \cdot 2H_2O[/tex]) needed to prepare 600.0 mL of 3.500 M oxalic acid solution.

2. Write the complete ionic and net ionic equations of a neutralization reaction between [tex]NaOH[/tex] and [tex]HCl[/tex].


Sagot :

### Part 1: Calculating the Mass of Oxalic Acid Dihydrate (C₂H₂O₄•2H₂O)

1. Convert the Volume of Solution from mL to L:
Given the volume of the solution is 600.0 mL. To convert this to liters (L):
[tex]\[ \text{Volume} = \frac{600.0 \,\text{mL}}{1000} = 0.6 \,\text{L} \][/tex]

2. Determine the Moles of Oxalic Acid Needed:
The molarity of the oxalic acid solution is given as 3.500 M (moles per liter). Using the volume in liters to find the number of moles:
[tex]\[ \text{Moles of oxalic acid} = \text{Volume} \times \text{Molarity} = 0.6 \,\text{L} \times 3.500 \,\text{M} = 2.1 \,\text{moles} \][/tex]

3. Calculate the Molar Mass of Oxalic Acid Dihydrate:
- Oxalic acid (C₂H₂O₄) molar mass:
[tex]\[ \text{Molar mass of C}_2\text{H}_2\text{O}_4 = 2 \times 12.01 + 2 \times 1.01 + 4 \times 16.00 = 90.04 \,\text{g/mol} \][/tex]
- Water (H₂O) molar mass:
[tex]\[ \text{Molar mass of H}_2\text{O} = 2 \times 1.01 + 16.00 = 18.02 \,\text{g/mol} \][/tex]
- Since there are two water molecules in oxalic acid dihydrate:
[tex]\[ \text{Molar mass of 2H}_2\text{O} = 2 \times 18.02 = 36.04 \,\text{g/mol} \][/tex]
- Thus, the molar mass of the full oxalic acid dihydrate (C₂H₂O₄•2H₂O) is:
[tex]\[ \text{Molar mass of C}_2\text{H}_2\text{O}_4•2\text{H}_2\text{O} = 90.04 + 36.04 = 126.08 \,\text{g/mol} \][/tex]

4. Calculate the Mass of Oxalic Acid Dihydrate Required:
Using the moles of oxalic acid calculated and the molar mass of the dihydrate form:
[tex]\[ \text{Mass of oxalic acid dihydrate} = \text{Moles} \times \text{Molar mass} = 2.1 \,\text{moles} \times 126.08 \,\text{g/mol} = 264.768 \,\text{g} \][/tex]

So, you need 264.768 grams of oxalic acid dihydrate to prepare 600.0 mL of a 3.500 M oxalic acid solution.

### Part 2: Writing the Complete and Net Ionic Equations of the Neutralization Reaction Between NaOH and HCl

1. Balanced Molecular Equation:
[tex]\[ \text{NaOH}(aq) + \text{HCl}(aq) \rightarrow \text{NaCl}(aq) + \text{H}_2\text{O}(l) \][/tex]

2. Complete Ionic Equation:
Separate all strong electrolytes into their ions:
[tex]\[ \text{Na}^+(aq) + \text{OH}^-(aq) + \text{H}^+(aq) + \text{Cl}^-(aq) \rightarrow \text{Na}^+(aq) + \text{Cl}^-(aq) + \text{H}_2\text{O}(l) \][/tex]

3. Net Ionic Equation:
Cancel out the spectator ions (Na[tex]\(^+\)[/tex] and Cl[tex]\(^-\)[/tex]) from the complete ionic equation since they appear on both sides:
[tex]\[ \text{OH}^-(aq) + \text{H}^+(aq) \rightarrow \text{H}_2\text{O}(l) \][/tex]

Thus, the complete ionic equation is:
[tex]\[ \text{Na}^+(aq) + \text{OH}^-(aq) + \text{H}^+(aq) + \text{Cl}^-(aq) \rightarrow \text{Na}^+(aq) + \text{Cl}^-(aq) + \text{H}_2\text{O}(l) \][/tex]

And the net ionic equation is:
[tex]\[ \text{OH}^-(aq) + \text{H}^+(aq) \rightarrow \text{H}_2\text{O}(l) \][/tex]