IDNLearn.com provides a seamless experience for finding and sharing answers. Our platform provides detailed and accurate responses from experts, helping you navigate any topic with confidence.
Sagot :
To solve this problem, we will use the given formula for kinetic energy:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
where:
- [tex]\( KE \)[/tex] is the kinetic energy,
- [tex]\( m \)[/tex] is the mass of the bottle,
- [tex]\( v \)[/tex] is the speed of the bottle.
We are given that the speed [tex]\( v \)[/tex] of the soda bottle is [tex]\( 4 \, \text{m/s} \)[/tex], and we need to calculate the kinetic energy for various masses.
### Step-by-Step Calculations
1. When the mass of the bottle is [tex]\( 0.125 \, \text{kg} \)[/tex]:
[tex]\[ KE = \frac{1}{2} \times 0.125 \, \text{kg} \times (4 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 0.125 \, \times 16 \][/tex]
[tex]\[ KE = 1.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \][/tex]
2. When the mass of the bottle is [tex]\( 0.250 \, \text{kg} \)[/tex]:
[tex]\[ KE = \frac{1}{2} \times 0.250 \, \text{kg} \times (4 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 0.250 \, \times 16 \][/tex]
[tex]\[ KE = 2.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \][/tex]
3. When the mass of the bottle is [tex]\( 0.375 \, \text{kg} \)[/tex]:
[tex]\[ KE = \frac{1}{2} \times 0.375 \, \text{kg} \times (4 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 0.375 \, \times 16 \][/tex]
[tex]\[ KE = 3.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \][/tex]
4. When the mass of the bottle is [tex]\( 0.500 \, \text{kg} \)[/tex]:
[tex]\[ KE = \frac{1}{2} \times 0.500 \, \text{kg} \times (4 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 0.500 \, \times 16 \][/tex]
[tex]\[ KE = 4.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \][/tex]
### Results Summary
- When the mass of the bottle is [tex]\( 0.125 \, \text{kg} \)[/tex], the [tex]\( KE \)[/tex] is [tex]\( 1.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \)[/tex].
- When the mass of the bottle is [tex]\( 0.250 \, \text{kg} \)[/tex], the [tex]\( KE \)[/tex] is [tex]\( 2.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \)[/tex].
- When the mass of the bottle is [tex]\( 0.375 \, \text{kg} \)[/tex], the [tex]\( KE \)[/tex] is [tex]\( 3.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \)[/tex].
- When the mass of the bottle is [tex]\( 0.500 \, \text{kg} \)[/tex], the [tex]\( KE \)[/tex] is [tex]\( 4.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \)[/tex].
By these calculations, we can observe how the kinetic energy of the bottle changes as its mass increases.
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
where:
- [tex]\( KE \)[/tex] is the kinetic energy,
- [tex]\( m \)[/tex] is the mass of the bottle,
- [tex]\( v \)[/tex] is the speed of the bottle.
We are given that the speed [tex]\( v \)[/tex] of the soda bottle is [tex]\( 4 \, \text{m/s} \)[/tex], and we need to calculate the kinetic energy for various masses.
### Step-by-Step Calculations
1. When the mass of the bottle is [tex]\( 0.125 \, \text{kg} \)[/tex]:
[tex]\[ KE = \frac{1}{2} \times 0.125 \, \text{kg} \times (4 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 0.125 \, \times 16 \][/tex]
[tex]\[ KE = 1.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \][/tex]
2. When the mass of the bottle is [tex]\( 0.250 \, \text{kg} \)[/tex]:
[tex]\[ KE = \frac{1}{2} \times 0.250 \, \text{kg} \times (4 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 0.250 \, \times 16 \][/tex]
[tex]\[ KE = 2.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \][/tex]
3. When the mass of the bottle is [tex]\( 0.375 \, \text{kg} \)[/tex]:
[tex]\[ KE = \frac{1}{2} \times 0.375 \, \text{kg} \times (4 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 0.375 \, \times 16 \][/tex]
[tex]\[ KE = 3.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \][/tex]
4. When the mass of the bottle is [tex]\( 0.500 \, \text{kg} \)[/tex]:
[tex]\[ KE = \frac{1}{2} \times 0.500 \, \text{kg} \times (4 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 0.500 \, \times 16 \][/tex]
[tex]\[ KE = 4.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \][/tex]
### Results Summary
- When the mass of the bottle is [tex]\( 0.125 \, \text{kg} \)[/tex], the [tex]\( KE \)[/tex] is [tex]\( 1.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \)[/tex].
- When the mass of the bottle is [tex]\( 0.250 \, \text{kg} \)[/tex], the [tex]\( KE \)[/tex] is [tex]\( 2.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \)[/tex].
- When the mass of the bottle is [tex]\( 0.375 \, \text{kg} \)[/tex], the [tex]\( KE \)[/tex] is [tex]\( 3.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \)[/tex].
- When the mass of the bottle is [tex]\( 0.500 \, \text{kg} \)[/tex], the [tex]\( KE \)[/tex] is [tex]\( 4.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \)[/tex].
By these calculations, we can observe how the kinetic energy of the bottle changes as its mass increases.
Your participation is crucial to us. Keep sharing your knowledge and experiences. Let's create a learning environment that is both enjoyable and beneficial. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.