Find solutions to your problems with the help of IDNLearn.com's expert community. Our platform offers reliable and comprehensive answers to help you make informed decisions quickly and easily.

The expression given does not form a complete mathematical statement or question. To make it meaningful, we can reframe it into a problem or provide context for its evaluation. Here are two possible options:

Option 1: Rewriting as an Expression to Simplify
Simplify the following expression:
[tex]\[ x^{\cosh^2 \left( \frac{x}{a} \right)} \][/tex]

Option 2: Rewriting as an Equation to Solve
Solve the following equation for [tex]\( x \)[/tex]:
[tex]\[ x^{\cosh^2 \left( \frac{x}{a} \right)} = 1 \][/tex]

Depending on the intended context, either option provides a clearer and more meaningful task.


Sagot :

Let's solve the given expression step-by-step:

Given the expression:
[tex]\[ x^{\cosh^2\left(\frac{x}{a}\right)} \][/tex]

1. Identify the components:
- [tex]\( x \)[/tex]: The base of the expression
- [tex]\( \cosh\left(\frac{x}{a}\right) \)[/tex]: The hyperbolic cosine function evaluated at [tex]\(\frac{x}{a}\)[/tex]
- [tex]\( \cosh^2\left(\frac{x}{a}\right) \)[/tex]: Squaring the result of the hyperbolic cosine function

2. Understanding the Hyperbolic Cosine Function:
- The hyperbolic cosine function is defined as:
[tex]\[ \cosh(y) = \frac{e^y + e^{-y}}{2} \][/tex]
- In this problem, the variable [tex]\( y \)[/tex] is replaced with [tex]\(\frac{x}{a}\)[/tex], so we have:
[tex]\[ \cosh\left(\frac{x}{a}\right) = \frac{e^{\frac{x}{a}} + e^{-\frac{x}{a}}}{2} \][/tex]

3. Square of Hyperbolic Cosine Function:
- Squaring the hyperbolic cosine function:
[tex]\[ \cosh^2\left(\frac{x}{a}\right) = \left(\frac{e^{\frac{x}{a}} + e^{-\frac{x}{a}}}{2}\right)^2 \][/tex]
Simplifying the square:
[tex]\[ \cosh^2\left(\frac{x}{a}\right) = \left(\frac{e^{\frac{x}{a}} + e^{-\frac{x}{a}}}{2}\right) \times \left(\frac{e^{\frac{x}{a}} + e^{-\frac{x}{a}}}{2}\right) \][/tex]
[tex]\[ \cosh^2\left(\frac{x}{a}\right) = \frac{(e^{\frac{x}{a}} + e^{-\frac{x}{a}})^2}{4} \][/tex]
Expanding the numerator:
[tex]\[ \cosh^2\left(\frac{x}{a}\right) = \frac{e^{\frac{2x}{a}} + 2 + e^{-\frac{2x}{a}}}{4} \][/tex]

4. Final Expression:
- Substitute the squared hyperbolic cosine back into the original expression:
[tex]\[ x^{\cosh^2\left(\frac{x}{a}\right)} = x^{\frac{e^{\frac{2x}{a}} + 2 + e^{-\frac{2x}{a}}}{4}} \][/tex]

However, recognizing the structure and arriving directly to the answer, we arrive at the simplified form:
[tex]\[ x^{\left(\cosh\left(\frac{x}{a}\right)\right)^2} \][/tex]

Thus, the final expression we were asked to find is:
[tex]\[ x^{\cosh^2 \left(\frac{x}{a}\right)} \][/tex]

This process breaks down the components of the given expression step-by-step to understand the underlying functions and operations.