IDNLearn.com: Your one-stop destination for finding reliable answers. Get the information you need from our community of experts who provide accurate and comprehensive answers to all your questions.
Sagot :
To determine the enthalpy change [tex]\((\Delta H)\)[/tex] for the reaction:
[tex]\[ \text{SO}_{2(g)} + \frac{1}{2} \text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]
using Hess's law, we can utilize the given reactions:
1.
[tex]\[ \text{S}_{(s)} + \text{O}_{2(g)} \rightarrow \text{SO}_{2(g)} \quad \Delta H = -296.8 \ \text{kJ} \][/tex]
2.
[tex]\[ 2\text{S}_{(s)} + 3\text{O}_{2(g)} \rightarrow 2\text{SO}_{3(g)} \quad \Delta H = -795.45 \ \text{kJ} \][/tex]
Let's proceed step by step:
### Step 1: Understand the Goal
We need to find the [tex]\(\Delta H\)[/tex] for the reaction:
[tex]\[ \text{SO}_{2(g)} + \frac{1}{2} \text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]
### Step 2: Manipulate the Given Equations
Equation 1:
[tex]\[ \text{S}_{(s)} + \text{O}_{2(g)} \rightarrow \text{SO}_{2(g)} \quad \Delta H = -296.8 \ \text{kJ} \][/tex]
Equation 2 (let's express it in a way that involves only one mole of [tex]\(\text{SO}_{3(g)}\)[/tex]):
[tex]\[ 2\text{S}_{(s)} + 3\text{O}_{2(g)} \rightarrow 2\text{SO}_{3(g)} \][/tex]
Divide Equation 2 by 2 to get it per mole of [tex]\(\text{SO}_{3(g)}\)[/tex]:
[tex]\[ \text{S}_{(s)} + \frac{3}{2}\text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]
Since we divided the reaction by 2, we must also divide [tex]\(\Delta H\)[/tex] by 2:
[tex]\[ \Delta H = \frac{-795.45 \ \text{kJ}}{2} = -397.725 \ \text{kJ} \][/tex]
### Step 3: Construct the Target Equation
Now, we need to write the target reaction in terms of the modified equations:
[tex]\[ \text{SO}_{2(g)} + \frac{1}{2}\text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]
Notice that:
- From the modified second equation, we have:
[tex]\[ \text{S}_{(s)} + \frac{3}{2}\text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]
- And from the first equation, we know:
[tex]\[ \text{S}_{(s)} + \text{O}_{2(g)} \rightarrow \text{SO}_{2(g)} \][/tex]
By reversing and subtracting the first equation from the modified second equation, we get our target reaction:
[tex]\[ (\text{S}_{(s)} + \frac{3}{2} \text{O}_{2(g)} \rightarrow \text{SO}_{3(g)}) - (\text{S}_{(s)} + \text{O}_{2(g)} \rightarrow \text{SO}_{2(g)}) \][/tex]
This simplifies to:
[tex]\[ \text{SO}_{2(g)} + \frac{1}{2} \text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]
### Step 4: Calculate the Enthalpy Change
The enthalpy change for the reaction will be:
[tex]\[ \Delta H_{\text{reaction}} = -397.725 \ \text{kJ} - (-296.8 \ \text{kJ}) \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -397.725 \ \text{kJ} + 296.8 \ \text{kJ} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -100.925 \ \text{kJ} \][/tex]
### Conclusion
The enthalpy change for the reaction:
[tex]\[ \text{SO}_{2(g)} + \frac{1}{2}\text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]
is [tex]\(\Delta H = -100.925 \ \text{kJ}\)[/tex].
[tex]\[ \text{SO}_{2(g)} + \frac{1}{2} \text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]
using Hess's law, we can utilize the given reactions:
1.
[tex]\[ \text{S}_{(s)} + \text{O}_{2(g)} \rightarrow \text{SO}_{2(g)} \quad \Delta H = -296.8 \ \text{kJ} \][/tex]
2.
[tex]\[ 2\text{S}_{(s)} + 3\text{O}_{2(g)} \rightarrow 2\text{SO}_{3(g)} \quad \Delta H = -795.45 \ \text{kJ} \][/tex]
Let's proceed step by step:
### Step 1: Understand the Goal
We need to find the [tex]\(\Delta H\)[/tex] for the reaction:
[tex]\[ \text{SO}_{2(g)} + \frac{1}{2} \text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]
### Step 2: Manipulate the Given Equations
Equation 1:
[tex]\[ \text{S}_{(s)} + \text{O}_{2(g)} \rightarrow \text{SO}_{2(g)} \quad \Delta H = -296.8 \ \text{kJ} \][/tex]
Equation 2 (let's express it in a way that involves only one mole of [tex]\(\text{SO}_{3(g)}\)[/tex]):
[tex]\[ 2\text{S}_{(s)} + 3\text{O}_{2(g)} \rightarrow 2\text{SO}_{3(g)} \][/tex]
Divide Equation 2 by 2 to get it per mole of [tex]\(\text{SO}_{3(g)}\)[/tex]:
[tex]\[ \text{S}_{(s)} + \frac{3}{2}\text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]
Since we divided the reaction by 2, we must also divide [tex]\(\Delta H\)[/tex] by 2:
[tex]\[ \Delta H = \frac{-795.45 \ \text{kJ}}{2} = -397.725 \ \text{kJ} \][/tex]
### Step 3: Construct the Target Equation
Now, we need to write the target reaction in terms of the modified equations:
[tex]\[ \text{SO}_{2(g)} + \frac{1}{2}\text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]
Notice that:
- From the modified second equation, we have:
[tex]\[ \text{S}_{(s)} + \frac{3}{2}\text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]
- And from the first equation, we know:
[tex]\[ \text{S}_{(s)} + \text{O}_{2(g)} \rightarrow \text{SO}_{2(g)} \][/tex]
By reversing and subtracting the first equation from the modified second equation, we get our target reaction:
[tex]\[ (\text{S}_{(s)} + \frac{3}{2} \text{O}_{2(g)} \rightarrow \text{SO}_{3(g)}) - (\text{S}_{(s)} + \text{O}_{2(g)} \rightarrow \text{SO}_{2(g)}) \][/tex]
This simplifies to:
[tex]\[ \text{SO}_{2(g)} + \frac{1}{2} \text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]
### Step 4: Calculate the Enthalpy Change
The enthalpy change for the reaction will be:
[tex]\[ \Delta H_{\text{reaction}} = -397.725 \ \text{kJ} - (-296.8 \ \text{kJ}) \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -397.725 \ \text{kJ} + 296.8 \ \text{kJ} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -100.925 \ \text{kJ} \][/tex]
### Conclusion
The enthalpy change for the reaction:
[tex]\[ \text{SO}_{2(g)} + \frac{1}{2}\text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]
is [tex]\(\Delta H = -100.925 \ \text{kJ}\)[/tex].
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Your search for answers ends at IDNLearn.com. Thanks for visiting, and we look forward to helping you again soon.