IDNLearn.com: Your one-stop destination for finding reliable answers. Get the information you need from our community of experts who provide accurate and comprehensive answers to all your questions.

Determine the enthalpy for the reaction represented by the equation:

[tex]\[ SO_{2(g)} + \frac{1}{2} O_{2(g)} \rightarrow SO_{3(g)} \][/tex]

Use Hess' law along with the following equations:

[tex]\[
\begin{array}{ll}
S_{(s)} + O_{2(g)} \rightarrow SO_{2(g)} & \Delta H = -296.8 \, \text{kJ} \\
2 S_{(s)} + 3 O_{2(g)} \rightarrow 2 SO_{3(g)} & \Delta H = -795.45 \, \text{kJ}
\end{array}
\][/tex]


Sagot :

To determine the enthalpy change [tex]\((\Delta H)\)[/tex] for the reaction:

[tex]\[ \text{SO}_{2(g)} + \frac{1}{2} \text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]

using Hess's law, we can utilize the given reactions:

1.
[tex]\[ \text{S}_{(s)} + \text{O}_{2(g)} \rightarrow \text{SO}_{2(g)} \quad \Delta H = -296.8 \ \text{kJ} \][/tex]

2.
[tex]\[ 2\text{S}_{(s)} + 3\text{O}_{2(g)} \rightarrow 2\text{SO}_{3(g)} \quad \Delta H = -795.45 \ \text{kJ} \][/tex]

Let's proceed step by step:

### Step 1: Understand the Goal

We need to find the [tex]\(\Delta H\)[/tex] for the reaction:

[tex]\[ \text{SO}_{2(g)} + \frac{1}{2} \text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]

### Step 2: Manipulate the Given Equations

Equation 1:

[tex]\[ \text{S}_{(s)} + \text{O}_{2(g)} \rightarrow \text{SO}_{2(g)} \quad \Delta H = -296.8 \ \text{kJ} \][/tex]

Equation 2 (let's express it in a way that involves only one mole of [tex]\(\text{SO}_{3(g)}\)[/tex]):

[tex]\[ 2\text{S}_{(s)} + 3\text{O}_{2(g)} \rightarrow 2\text{SO}_{3(g)} \][/tex]

Divide Equation 2 by 2 to get it per mole of [tex]\(\text{SO}_{3(g)}\)[/tex]:

[tex]\[ \text{S}_{(s)} + \frac{3}{2}\text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]

Since we divided the reaction by 2, we must also divide [tex]\(\Delta H\)[/tex] by 2:

[tex]\[ \Delta H = \frac{-795.45 \ \text{kJ}}{2} = -397.725 \ \text{kJ} \][/tex]

### Step 3: Construct the Target Equation

Now, we need to write the target reaction in terms of the modified equations:

[tex]\[ \text{SO}_{2(g)} + \frac{1}{2}\text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]

Notice that:

- From the modified second equation, we have:
[tex]\[ \text{S}_{(s)} + \frac{3}{2}\text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]

- And from the first equation, we know:
[tex]\[ \text{S}_{(s)} + \text{O}_{2(g)} \rightarrow \text{SO}_{2(g)} \][/tex]

By reversing and subtracting the first equation from the modified second equation, we get our target reaction:

[tex]\[ (\text{S}_{(s)} + \frac{3}{2} \text{O}_{2(g)} \rightarrow \text{SO}_{3(g)}) - (\text{S}_{(s)} + \text{O}_{2(g)} \rightarrow \text{SO}_{2(g)}) \][/tex]

This simplifies to:

[tex]\[ \text{SO}_{2(g)} + \frac{1}{2} \text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]

### Step 4: Calculate the Enthalpy Change

The enthalpy change for the reaction will be:

[tex]\[ \Delta H_{\text{reaction}} = -397.725 \ \text{kJ} - (-296.8 \ \text{kJ}) \][/tex]

[tex]\[ \Delta H_{\text{reaction}} = -397.725 \ \text{kJ} + 296.8 \ \text{kJ} \][/tex]

[tex]\[ \Delta H_{\text{reaction}} = -100.925 \ \text{kJ} \][/tex]

### Conclusion

The enthalpy change for the reaction:

[tex]\[ \text{SO}_{2(g)} + \frac{1}{2}\text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} \][/tex]

is [tex]\(\Delta H = -100.925 \ \text{kJ}\)[/tex].