Explore a world of knowledge and get your questions answered on IDNLearn.com. Discover reliable answers to your questions with our extensive database of expert knowledge.
Sagot :
To calculate the acceleration of the sled and the normal force acting on it, let's break down the given forces and the situation into manageable steps.
### Given Information:
- Mass of the sled, [tex]\( m = 8 \, \text{kg} \)[/tex]
- Angle of the pull, [tex]\( \theta = 50^\circ \)[/tex]
- Applied force, [tex]\( F = 20 \, \text{N} \)[/tex]
- Force of friction, [tex]\( F_{\text{friction}} = 2.4 \, \text{N} \)[/tex]
- Acceleration due to gravity, [tex]\( g = 9.8 \, \text{m/s}^2 \)[/tex]
### Step-by-Step Solution:
1. Calculate the Components of the Applied Force:
- The parallel component of the force (along the direction of motion):
[tex]\[ F_{\text{parallel}} = F \cos(\theta) \][/tex]
- The perpendicular component of the force (along the direction perpendicular to the motion):
[tex]\[ F_{\text{perpendicular}} = F \sin(\theta) \][/tex]
2. Net Force in the Direction of Motion:
- The force acting along the direction of motion has to overcome the frictional force:
[tex]\[ F_{\text{net, parallel}} = F_{\text{parallel}} - F_{\text{friction}} \][/tex]
3. Acceleration:
- Using Newton's second law, the net force divided by the mass gives the acceleration:
[tex]\[ a = \frac{F_{\text{net, parallel}}}{m} \][/tex]
4. Normal Force:
- The normal force is the force perpendicular to the surface. It is affected by the perpendicular component of the applied force and the weight of the sled:
[tex]\[ F_{\text{normal}} = mg - F_{\text{perpendicular}} \][/tex]
### Specific Calculation Steps:
1. Convert the Angle to Radians:
- Since trigonometric functions in some contexts might use radians, we convert degrees to radians:
[tex]\[ \theta_{\text{rad}} = \theta \times \left(\frac{\pi}{180}\right) \approx 50 \times 0.01745 \approx 0.873 \text{ radians} \][/tex]
2. Calculate the Parallel and Perpendicular Components:
[tex]\[ F_{\text{parallel}} = 20 \cos(50^\circ) \approx 20 \times 0.6428 \approx 12.856 \, \text{N} \][/tex]
[tex]\[ F_{\text{perpendicular}} = 20 \sin(50^\circ) \approx 20 \times 0.7660 \approx 15.32 \, \text{N} \][/tex]
3. Calculate the Net Force in the Parallel Direction:
[tex]\[ F_{\text{net, parallel}} = 12.856 \, \text{N} - 2.4 \, \text{N} \approx 10.456 \, \text{N} \][/tex]
4. Calculate the Acceleration:
[tex]\[ a = \frac{10.456 \, \text{N}}{8 \, \text{kg}} \approx 1.307 \, \text{m/s}^2 \][/tex]
- Rounded to the nearest tenth: [tex]\( a \approx 1.3 \, \text{m/s}^2 \)[/tex]
5. Calculate the Normal Force:
[tex]\[ F_{\text{normal}} = mg - F_{\text{perpendicular}} \approx (8 \times 9.8) \, \text{N} - 15.32 \, \text{N} = 78.4 \, \text{N} - 15.32 \, \text{N} \approx 63.08 \, \text{N} \][/tex]
- Rounded to the nearest tenth: [tex]\( F_{\text{normal}} \approx 63.1 \, \text{N} \)[/tex]
### Conclusion:
The acceleration of the sled is [tex]\( \boxed{1.3 \, \text{m/s}^2} \)[/tex], and the normal force acting on it is [tex]\( \boxed{63.1 \, \text{N}} \)[/tex].
Thus, the correct answer is:
[tex]\[ a=1.3 \, \text{m/s}^2 ; F_{N}=63.1 \, \text{N} \][/tex]
### Given Information:
- Mass of the sled, [tex]\( m = 8 \, \text{kg} \)[/tex]
- Angle of the pull, [tex]\( \theta = 50^\circ \)[/tex]
- Applied force, [tex]\( F = 20 \, \text{N} \)[/tex]
- Force of friction, [tex]\( F_{\text{friction}} = 2.4 \, \text{N} \)[/tex]
- Acceleration due to gravity, [tex]\( g = 9.8 \, \text{m/s}^2 \)[/tex]
### Step-by-Step Solution:
1. Calculate the Components of the Applied Force:
- The parallel component of the force (along the direction of motion):
[tex]\[ F_{\text{parallel}} = F \cos(\theta) \][/tex]
- The perpendicular component of the force (along the direction perpendicular to the motion):
[tex]\[ F_{\text{perpendicular}} = F \sin(\theta) \][/tex]
2. Net Force in the Direction of Motion:
- The force acting along the direction of motion has to overcome the frictional force:
[tex]\[ F_{\text{net, parallel}} = F_{\text{parallel}} - F_{\text{friction}} \][/tex]
3. Acceleration:
- Using Newton's second law, the net force divided by the mass gives the acceleration:
[tex]\[ a = \frac{F_{\text{net, parallel}}}{m} \][/tex]
4. Normal Force:
- The normal force is the force perpendicular to the surface. It is affected by the perpendicular component of the applied force and the weight of the sled:
[tex]\[ F_{\text{normal}} = mg - F_{\text{perpendicular}} \][/tex]
### Specific Calculation Steps:
1. Convert the Angle to Radians:
- Since trigonometric functions in some contexts might use radians, we convert degrees to radians:
[tex]\[ \theta_{\text{rad}} = \theta \times \left(\frac{\pi}{180}\right) \approx 50 \times 0.01745 \approx 0.873 \text{ radians} \][/tex]
2. Calculate the Parallel and Perpendicular Components:
[tex]\[ F_{\text{parallel}} = 20 \cos(50^\circ) \approx 20 \times 0.6428 \approx 12.856 \, \text{N} \][/tex]
[tex]\[ F_{\text{perpendicular}} = 20 \sin(50^\circ) \approx 20 \times 0.7660 \approx 15.32 \, \text{N} \][/tex]
3. Calculate the Net Force in the Parallel Direction:
[tex]\[ F_{\text{net, parallel}} = 12.856 \, \text{N} - 2.4 \, \text{N} \approx 10.456 \, \text{N} \][/tex]
4. Calculate the Acceleration:
[tex]\[ a = \frac{10.456 \, \text{N}}{8 \, \text{kg}} \approx 1.307 \, \text{m/s}^2 \][/tex]
- Rounded to the nearest tenth: [tex]\( a \approx 1.3 \, \text{m/s}^2 \)[/tex]
5. Calculate the Normal Force:
[tex]\[ F_{\text{normal}} = mg - F_{\text{perpendicular}} \approx (8 \times 9.8) \, \text{N} - 15.32 \, \text{N} = 78.4 \, \text{N} - 15.32 \, \text{N} \approx 63.08 \, \text{N} \][/tex]
- Rounded to the nearest tenth: [tex]\( F_{\text{normal}} \approx 63.1 \, \text{N} \)[/tex]
### Conclusion:
The acceleration of the sled is [tex]\( \boxed{1.3 \, \text{m/s}^2} \)[/tex], and the normal force acting on it is [tex]\( \boxed{63.1 \, \text{N}} \)[/tex].
Thus, the correct answer is:
[tex]\[ a=1.3 \, \text{m/s}^2 ; F_{N}=63.1 \, \text{N} \][/tex]
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for choosing IDNLearn.com for your queries. We’re committed to providing accurate answers, so visit us again soon.