Get expert advice and community support for all your questions on IDNLearn.com. Find in-depth and accurate answers to all your questions from our knowledgeable and dedicated community members.
Sagot :
Sure, let's evaluate the given expression step-by-step:
We start with the given formula:
[tex]\[ E = z^ \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \][/tex]
Given values:
- [tex]\(z^ = 1.10\)[/tex]
- [tex]\(\sigma_1 = 0.77\)[/tex]
- [tex]\(\sigma_2 = 0.71\)[/tex]
- [tex]\(n_1 = 15\)[/tex]
- [tex]\(n_2 = 60\)[/tex]
Step 1: Calculate [tex]\(\frac{\sigma_1^2}{n_1}\)[/tex]
[tex]\[ \sigma_1^2 = 0.77^2 = 0.5929 \][/tex]
[tex]\[ \frac{\sigma_1^2}{n_1} = \frac{0.5929}{15} \approx 0.039527 \][/tex]
Step 2: Calculate [tex]\(\frac{\sigma_2^2}{n_2}\)[/tex]
[tex]\[ \sigma_2^2 = 0.71^2 = 0.5041 \][/tex]
[tex]\[ \frac{\sigma_2^2}{n_2} = \frac{0.5041}{60} \approx 0.0084016667 \][/tex]
Step 3: Add the two variances to get the total variance term
[tex]\[ \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \approx 0.039527 + 0.0084016667 = 0.04792833333333334 \][/tex]
Step 4: Calculate the square root of the variance term
[tex]\[ \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} = \sqrt{0.04792833333333334} \approx 0.21892540586540735 \][/tex]
Step 5: Multiply by [tex]\(z^*\)[/tex]
[tex]\[ E = 1.10 \times 0.21892540586540735 \approx 0.2408179464519481 \][/tex]
Step 6: Round the result to two decimal places
[tex]\[ E \approx 0.24 \][/tex]
Therefore, the value of [tex]\(E\)[/tex], rounded to two decimal places, is:
[tex]\[ E = 0.24 \][/tex]
We start with the given formula:
[tex]\[ E = z^ \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \][/tex]
Given values:
- [tex]\(z^ = 1.10\)[/tex]
- [tex]\(\sigma_1 = 0.77\)[/tex]
- [tex]\(\sigma_2 = 0.71\)[/tex]
- [tex]\(n_1 = 15\)[/tex]
- [tex]\(n_2 = 60\)[/tex]
Step 1: Calculate [tex]\(\frac{\sigma_1^2}{n_1}\)[/tex]
[tex]\[ \sigma_1^2 = 0.77^2 = 0.5929 \][/tex]
[tex]\[ \frac{\sigma_1^2}{n_1} = \frac{0.5929}{15} \approx 0.039527 \][/tex]
Step 2: Calculate [tex]\(\frac{\sigma_2^2}{n_2}\)[/tex]
[tex]\[ \sigma_2^2 = 0.71^2 = 0.5041 \][/tex]
[tex]\[ \frac{\sigma_2^2}{n_2} = \frac{0.5041}{60} \approx 0.0084016667 \][/tex]
Step 3: Add the two variances to get the total variance term
[tex]\[ \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \approx 0.039527 + 0.0084016667 = 0.04792833333333334 \][/tex]
Step 4: Calculate the square root of the variance term
[tex]\[ \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} = \sqrt{0.04792833333333334} \approx 0.21892540586540735 \][/tex]
Step 5: Multiply by [tex]\(z^*\)[/tex]
[tex]\[ E = 1.10 \times 0.21892540586540735 \approx 0.2408179464519481 \][/tex]
Step 6: Round the result to two decimal places
[tex]\[ E \approx 0.24 \][/tex]
Therefore, the value of [tex]\(E\)[/tex], rounded to two decimal places, is:
[tex]\[ E = 0.24 \][/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Thank you for choosing IDNLearn.com for your queries. We’re committed to providing accurate answers, so visit us again soon.