IDNLearn.com provides a comprehensive solution for all your question and answer needs. Discover comprehensive answers to your questions from our community of experienced professionals.
Sagot :
To find the electrical potential energy stored in the capacitor, we can use the formula:
[tex]\[ PE_e = \frac{1}{2} Q V \][/tex]
where:
- [tex]\(PE_e\)[/tex] is the electrical potential energy,
- [tex]\(Q\)[/tex] is the charge on each plate,
- [tex]\(V\)[/tex] is the potential difference across the plates.
Given values:
- [tex]\( Q = 8.0 \times 10^{-10} \, \text{C} \)[/tex]
- [tex]\( V = 40.0 \, \text{V} \)[/tex]
Plug these values into the formula:
[tex]\[ PE_e = \frac{1}{2} \times (8.0 \times 10^{-10} \, \text{C}) \times (40.0 \, \text{V}) \][/tex]
First, perform the multiplication within the parentheses:
[tex]\[ 8.0 \times 10^{-10} \, \text{C} \times 40.0 \, \text{V} = 320.0 \times 10^{-10} \, \text{CV} \][/tex]
Then, multiply by [tex]\( \frac{1}{2} \)[/tex]:
[tex]\[ PE_e = \frac{1}{2} \times 320.0 \times 10^{-10} \, \text{CV} \][/tex]
[tex]\[ PE_e = 160.0 \times 10^{-10} \, \text{J} \][/tex]
Convert [tex]\( 160.0 \times 10^{-10} \, \text{J} \)[/tex] to a more standard scientific notation:
[tex]\[ 160.0 \times 10^{-10} \, \text{J} = 1.6 \times 10^{-8} \, \text{J} \][/tex]
Thus, the electrical potential energy stored in the capacitor is:
[tex]\[ \boxed{1.6 \times 10^{-8} \, \text{J}} \][/tex]
Hence, the correct option is:
A. [tex]\(1.6 \times 10^{-8} \, \text{J}\)[/tex]
[tex]\[ PE_e = \frac{1}{2} Q V \][/tex]
where:
- [tex]\(PE_e\)[/tex] is the electrical potential energy,
- [tex]\(Q\)[/tex] is the charge on each plate,
- [tex]\(V\)[/tex] is the potential difference across the plates.
Given values:
- [tex]\( Q = 8.0 \times 10^{-10} \, \text{C} \)[/tex]
- [tex]\( V = 40.0 \, \text{V} \)[/tex]
Plug these values into the formula:
[tex]\[ PE_e = \frac{1}{2} \times (8.0 \times 10^{-10} \, \text{C}) \times (40.0 \, \text{V}) \][/tex]
First, perform the multiplication within the parentheses:
[tex]\[ 8.0 \times 10^{-10} \, \text{C} \times 40.0 \, \text{V} = 320.0 \times 10^{-10} \, \text{CV} \][/tex]
Then, multiply by [tex]\( \frac{1}{2} \)[/tex]:
[tex]\[ PE_e = \frac{1}{2} \times 320.0 \times 10^{-10} \, \text{CV} \][/tex]
[tex]\[ PE_e = 160.0 \times 10^{-10} \, \text{J} \][/tex]
Convert [tex]\( 160.0 \times 10^{-10} \, \text{J} \)[/tex] to a more standard scientific notation:
[tex]\[ 160.0 \times 10^{-10} \, \text{J} = 1.6 \times 10^{-8} \, \text{J} \][/tex]
Thus, the electrical potential energy stored in the capacitor is:
[tex]\[ \boxed{1.6 \times 10^{-8} \, \text{J}} \][/tex]
Hence, the correct option is:
A. [tex]\(1.6 \times 10^{-8} \, \text{J}\)[/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. IDNLearn.com is your reliable source for answers. We appreciate your visit and look forward to assisting you again soon.