IDNLearn.com is your go-to resource for finding expert answers and community support. Discover comprehensive answers from knowledgeable members of our community, covering a wide range of topics to meet all your informational needs.
Sagot :
To find the electrical potential energy stored in the capacitor, we can use the formula:
[tex]\[ PE_e = \frac{1}{2} Q V \][/tex]
where:
- [tex]\(PE_e\)[/tex] is the electrical potential energy,
- [tex]\(Q\)[/tex] is the charge on each plate,
- [tex]\(V\)[/tex] is the potential difference across the plates.
Given values:
- [tex]\( Q = 8.0 \times 10^{-10} \, \text{C} \)[/tex]
- [tex]\( V = 40.0 \, \text{V} \)[/tex]
Plug these values into the formula:
[tex]\[ PE_e = \frac{1}{2} \times (8.0 \times 10^{-10} \, \text{C}) \times (40.0 \, \text{V}) \][/tex]
First, perform the multiplication within the parentheses:
[tex]\[ 8.0 \times 10^{-10} \, \text{C} \times 40.0 \, \text{V} = 320.0 \times 10^{-10} \, \text{CV} \][/tex]
Then, multiply by [tex]\( \frac{1}{2} \)[/tex]:
[tex]\[ PE_e = \frac{1}{2} \times 320.0 \times 10^{-10} \, \text{CV} \][/tex]
[tex]\[ PE_e = 160.0 \times 10^{-10} \, \text{J} \][/tex]
Convert [tex]\( 160.0 \times 10^{-10} \, \text{J} \)[/tex] to a more standard scientific notation:
[tex]\[ 160.0 \times 10^{-10} \, \text{J} = 1.6 \times 10^{-8} \, \text{J} \][/tex]
Thus, the electrical potential energy stored in the capacitor is:
[tex]\[ \boxed{1.6 \times 10^{-8} \, \text{J}} \][/tex]
Hence, the correct option is:
A. [tex]\(1.6 \times 10^{-8} \, \text{J}\)[/tex]
[tex]\[ PE_e = \frac{1}{2} Q V \][/tex]
where:
- [tex]\(PE_e\)[/tex] is the electrical potential energy,
- [tex]\(Q\)[/tex] is the charge on each plate,
- [tex]\(V\)[/tex] is the potential difference across the plates.
Given values:
- [tex]\( Q = 8.0 \times 10^{-10} \, \text{C} \)[/tex]
- [tex]\( V = 40.0 \, \text{V} \)[/tex]
Plug these values into the formula:
[tex]\[ PE_e = \frac{1}{2} \times (8.0 \times 10^{-10} \, \text{C}) \times (40.0 \, \text{V}) \][/tex]
First, perform the multiplication within the parentheses:
[tex]\[ 8.0 \times 10^{-10} \, \text{C} \times 40.0 \, \text{V} = 320.0 \times 10^{-10} \, \text{CV} \][/tex]
Then, multiply by [tex]\( \frac{1}{2} \)[/tex]:
[tex]\[ PE_e = \frac{1}{2} \times 320.0 \times 10^{-10} \, \text{CV} \][/tex]
[tex]\[ PE_e = 160.0 \times 10^{-10} \, \text{J} \][/tex]
Convert [tex]\( 160.0 \times 10^{-10} \, \text{J} \)[/tex] to a more standard scientific notation:
[tex]\[ 160.0 \times 10^{-10} \, \text{J} = 1.6 \times 10^{-8} \, \text{J} \][/tex]
Thus, the electrical potential energy stored in the capacitor is:
[tex]\[ \boxed{1.6 \times 10^{-8} \, \text{J}} \][/tex]
Hence, the correct option is:
A. [tex]\(1.6 \times 10^{-8} \, \text{J}\)[/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com is dedicated to providing accurate answers. Thank you for visiting, and see you next time for more solutions.