IDNLearn.com is your trusted platform for finding reliable answers. Explore thousands of verified answers from experts and find the solutions you need, no matter the topic.

A ball is moving at [tex][tex]$1.75 \, \text{m/s}$[/tex][/tex] at an angle of [tex]-45.0^{\circ}[/tex] when it is hit by a bat. The ball is in contact with the bat for [tex]0.30 \, \text{s}[/tex]. After being hit, the ball moves with a velocity of [tex]2.95 \, \text{m/s}[/tex] at an angle of [tex]125^{\circ}[/tex].

What is the magnitude of the acceleration of the ball?

[tex]
a = \, [?] \, \text{m/s}^2
[/tex]


Sagot :

To find the magnitude of the acceleration of the ball, let's break down the problem into step-by-step calculations.

### Step 1: Determine the Initial and Final Velocity Components

First, we separate the initial and final velocities into their x and y components. Let's start by converting the angles from degrees to radians:

1. Initial angle: [tex]\(-45.0^\circ\)[/tex]
2. Final angle: [tex]\(125.0^\circ\)[/tex]

### Conversion to Radians

We'll need to convert these angles to radians:
[tex]\[ \text{angle\_initial\_rad} = -45.0^\circ \times \frac{\pi}{180} \approx -0.7854 \text{ radians} \][/tex]
[tex]\[ \text{angle\_final\_rad} = 125.0^\circ \times \frac{\pi}{180} \approx 2.1817 \text{ radians} \][/tex]

### Step 2: Compute Initial and Final Velocity Components

Using trigonometric functions:

- Initial velocity components:
[tex]\[ v_{\text{initial\_x}} = 1.75 \, \text{m/s} \times \cos(-0.7854) \approx 1.2374 \, \text{m/s} \][/tex]
[tex]\[ v_{\text{initial\_y}} = 1.75 \, \text{m/s} \times \sin(-0.7854) \approx -1.2374 \, \text{m/s} \][/tex]

- Final velocity components:
[tex]\[ v_{\text{final\_x}} = 2.95 \, \text{m/s} \times \cos(2.1817) \approx -1.6921 \, \text{m/s} \][/tex]
[tex]\[ v_{\text{final\_y}} = 2.95 \, \text{m/s} \times \sin(2.1817) \approx 2.4165 \, \text{m/s} \][/tex]

### Step 3: Calculate the Change in Velocity Components

- Change in the [tex]\(x\)[/tex]-component of velocity:
[tex]\[ \Delta v_x = v_{\text{final\_x}} - v_{\text{initial\_x}} \approx -1.6921 - 1.2374 \approx -2.9295 \, \text{m/s} \][/tex]

- Change in the [tex]\(y\)[/tex]-component of velocity:
[tex]\[ \Delta v_y = v_{\text{final\_y}} - v_{\text{initial\_y}} \approx 2.4165 - (-1.2374) \approx 3.6539 \, \text{m/s} \][/tex]

### Step 4: Compute the Magnitude of the Change in Velocity

The magnitude of the change in velocity ([tex]\(\Delta v\)[/tex]) can be calculated using Pythagoras' theorem:
[tex]\[ \Delta v = \sqrt{(\Delta v_x)^2 + (\Delta v_y)^2} \][/tex]
[tex]\[ \Delta v \approx \sqrt{(-2.9295)^2 + (3.6539)^2} \approx \sqrt{8.5823 + 13.3539} \approx \sqrt{21.9362} \approx 4.6833 \, \text{m/s} \][/tex]

### Step 5: Calculate the Magnitude of the Acceleration

Finally, to find the magnitude of the acceleration ([tex]\(a\)[/tex]), we use the formula:
[tex]\[ a = \frac{\Delta v}{\text{contact time}} \][/tex]
[tex]\[ a \approx \frac{4.6833 \, \text{m/s}}{0.30 \, \text{s}} \approx 15.6109 \, \text{m/s}^2 \][/tex]

### Conclusion

The magnitude of the acceleration of the ball is:
[tex]\[ a \approx 15.6109 \, \text{m/s}^2 \][/tex]
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.