Get the most out of your questions with IDNLearn.com's extensive resources. Our experts provide accurate and detailed responses to help you navigate any topic or issue with confidence.

Which summation represents the total number of pennies on the chessboard?

A. [tex]\sum_{n=1}^{64} 1 \cdot 2^{n-1}[/tex]

B. [tex]\sum_{n=1}^{32} 2^{31} \cdot 2^{n-1}[/tex]

C. [tex]\sum_{n=1}^{32} 2^{32} \cdot 2^{n-1}[/tex]


Sagot :

Let's analyze each summation step-by-step to determine the one that represents the total number of pennies on the chessboard:

### Summation 1:
[tex]\[ \sum_{n=1}^{64} 1 \cdot 2^{n-1} \][/tex]

This summation is representing the idea of placing one penny on the first square of a chessboard, and then doubling the number of pennies on each subsequent square. A chessboard has 64 squares. Let's calculate the total number of pennies:

[tex]\[ \begin{align*} \text{First term: } & 1 \cdot 2^{0} = 1 \\ \text{Second term: } & 1 \cdot 2^{1} = 2 \\ \text{Third term: } & 1 \cdot 2^{2} = 4 \\ \text{Fourth term: } & 1 \cdot 2^{3} = 8 \\ &\vdots \\ \text{Last term: } & 1 \cdot 2^{63} \end{align*} \][/tex]

This summation is:

[tex]\[ 1 + 2 + 4 + \cdots + 2^{63} \][/tex]

This is a geometric series with the first term [tex]\(a = 1\)[/tex] and common ratio [tex]\(r = 2\)[/tex]. The sum of the first [tex]\(n\)[/tex] terms of a geometric series can be calculated using the formula:

[tex]\[ S_n = a \frac{r^n - 1}{r - 1} \][/tex]

For [tex]\(n = 64\)[/tex]:

[tex]\[ S_{64} = 1 \cdot \frac{2^{64} - 1}{2 - 1} = 2^{64} - 1 \][/tex]

Hence, the total number of pennies on the chessboard is:

[tex]\[ 2^{64} - 1 = 18446744073709551615 \][/tex]

### Summation 2:
[tex]\[ \sum_{n=1}^{32} 2^{31} \cdot 2^{n-1} \][/tex]

Now, let's analyze the second summation. Here, [tex]\(2^{31}\)[/tex] is a constant factor multiplied by the geometric series [tex]\(2^{n-1}\)[/tex] over 32 terms.

[tex]\[ \begin{align*} \text{First term: } & 2^{31} \cdot 2^{0} = 2^{31} \\ \text{Second term: } & 2^{31} \cdot 2^{1} = 2^{32} \\ \text{Third term: } & 2^{31} \cdot 2^{2} = 2^{33} \\ \text{Fourth term: } & 2^{31} \cdot 2^{3} = 2^{34} \\ &\vdots \\ \text{Last term: } & 2^{31} \cdot 2^{31} \end{align*} \][/tex]

This sum is:

[tex]\[ 2^{31} + 2^{32} + 2^{33} + \cdots + 2^{62} \][/tex]

This is a geometric series with the first term [tex]\(a = 2^{31}\)[/tex] and common ratio [tex]\(r = 2\)[/tex]. The sum of the first [tex]\(n\)[/tex] terms of a geometric series can be calculated using the formula:

[tex]\[ S_n = a \frac{r^n - 1}{r - 1} \][/tex]

For [tex]\(n = 32\)[/tex]:

[tex]\[ S_{32} = 2^{31} \cdot \frac{2^{32} - 1}{2 - 1} = 2^{31} \cdot (2^{32} - 1) \][/tex]

Hence:

[tex]\[ 2^{31} \cdot (2^{32} - 1) = 9223372034707292160 \][/tex]

### Summation 3:
[tex]\[ \sum_{n=1}^{32} 2^{32} \cdot 2^{n-1} \][/tex]

Finally, let's analyze the third summation. Here, [tex]\(2^{32}\)[/tex] is a constant factor multiplied by the geometric series [tex]\(2^{n-1}\)[/tex] over 32 terms.

[tex]\[ \begin{align*} \text{First term: } & 2^{32} \cdot 2^{0} = 2^{32} \\ \text{Second term: } & 2^{32} \cdot 2^{1} = 2^{33} \\ \text{Third term: } & 2^{32} \cdot 2^{2} = 2^{34} \\ \text{Fourth term: } & 2^{32} \cdot 2^{3} = 2^{35} \\ &\vdots \\ \text{Last term: } & 2^{32} \cdot 2^{31} \end{align*} \][/tex]

This sum is:

[tex]\[ 2^{32} + 2^{33} + 2^{34} + \cdots + 2^{63} \][/tex]

This is a geometric series with the first term [tex]\(a = 2^{32}\)[/tex] and common ratio [tex]\(r = 2\)[/tex]. The sum of the first [tex]\(n\)[/tex] terms of a geometric series can be calculated using the formula:

[tex]\[ S_n = a \frac{r^n - 1}{r - 1} \][/tex]

For [tex]\(n = 32\)[/tex]:

[tex]\[ S_{32} = 2^{32} \cdot \frac{2^{32} - 1}{2 - 1} = 2^{32} \cdot (2^{32} - 1) \][/tex]

Hence:

[tex]\[ 2^{32} \cdot (2^{32} - 1) = 18446744069414584320 \][/tex]

### Conclusion:
The summation that represents the total number of pennies on the chessboard is:

[tex]\[ \sum_{n=1}^{64} 1 \cdot 2^{n-1} \][/tex]

which equals [tex]\(18446744073709551615\)[/tex] pennies.