Join IDNLearn.com today and start getting the answers you've been searching for. Our platform provides accurate, detailed responses to help you navigate any topic with ease.
Sagot :
Let's start with the quadratic equation:
[tex]\[ x^2 - 4k\sqrt{2} x + 2k^4 - 1 = 0 \][/tex]
where [tex]\( k \)[/tex] is a positive constant, and the roots are given as [tex]\( \alpha \)[/tex] and [tex]\( \beta \)[/tex].
### Step 1: Relation between the roots and coefficients
Using Vieta's formulas for the quadratic equations:
1. Sum of the roots ([tex]\(\alpha + \beta\)[/tex]):
[tex]\[ \alpha + \beta = 4k\sqrt{2} \][/tex]
2. Product of the roots ([tex]\(\alpha\beta\)[/tex]):
[tex]\[ \alpha \beta = 2k^4 - 1 \][/tex]
### Step 2: Given condition on the sum of squares of the roots
We are given:
[tex]\[ \alpha^2 + \beta^2 = 66 \][/tex]
Using the identity [tex]\(\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta\)[/tex], we substitute the values obtained from Vieta's formulas:
[tex]\[ \alpha^2 + \beta^2 = (4k\sqrt{2})^2 - 2(\alpha\beta) \][/tex]
[tex]\[ 66 = 16k^2 \cdot 2 - 2(2k^4 - 1) \][/tex]
[tex]\[ 66 = 32k^2 - 4k^4 + 2 \][/tex]
[tex]\[ 64 = 32k^2 - 4k^4 \][/tex]
[tex]\[ 4k^4 - 32k^2 + 64 = 0 \][/tex]
### Step 3: Solve for [tex]\(k\)[/tex]
Divide the entire equation by 4:
[tex]\[ k^4 - 8k^2 + 16 = 0 \][/tex]
This can be treated as a quadratic in terms of [tex]\( k^2 \)[/tex]. Let [tex]\( y = k^2 \)[/tex]:
[tex]\[ y^2 - 8y + 16 = 0 \][/tex]
Solve the quadratic equation:
[tex]\[ y = \frac{8 \pm \sqrt{64 - 64}}{2} = \frac{8 \pm 0}{2} = 4 \][/tex]
Thus:
[tex]\[ k^2 = 4 \][/tex]
[tex]\[ k = 2 \][/tex]
(Because [tex]\( k \)[/tex] is a positive constant)
### Step 4: Finding [tex]\( \alpha^3 + \beta^3 = p\sqrt{2} \)[/tex]
We use the identity:
[tex]\[ \alpha^3 + \beta^3 = (\alpha + \beta)((\alpha^2 + \beta^2) - \alpha\beta) \][/tex]
Substitute the known values:
[tex]\[ \alpha + \beta = 4k\sqrt{2} = 4 \cdot 2 \sqrt{2} = 8\sqrt{2} \][/tex]
[tex]\[ \alpha^2 + \beta^2 = 66 \][/tex]
[tex]\[ \alpha\beta = 2k^4 - 1 = 2 \cdot 2^4 - 1 = 31 \][/tex]
Then:
[tex]\[ \alpha^3 + \beta^3 = (8\sqrt{2}) \left(66 - 31\right) \][/tex]
[tex]\[ \alpha^3 + \beta^3 = 8\sqrt{2} \cdot 35 \][/tex]
[tex]\[ \alpha^3 + \beta^3 = 280\sqrt{2} \][/tex]
Since it is given that [tex]\(\alpha^3 + \beta^3 = p\sqrt{2}\)[/tex], we compare:
[tex]\[ 280\sqrt{2} = p\sqrt{2} \][/tex]
Thus:
[tex]\[ p = 280 \][/tex]
The value of [tex]\( p \)[/tex] is:
[tex]\[ \boxed{280} \][/tex]
[tex]\[ x^2 - 4k\sqrt{2} x + 2k^4 - 1 = 0 \][/tex]
where [tex]\( k \)[/tex] is a positive constant, and the roots are given as [tex]\( \alpha \)[/tex] and [tex]\( \beta \)[/tex].
### Step 1: Relation between the roots and coefficients
Using Vieta's formulas for the quadratic equations:
1. Sum of the roots ([tex]\(\alpha + \beta\)[/tex]):
[tex]\[ \alpha + \beta = 4k\sqrt{2} \][/tex]
2. Product of the roots ([tex]\(\alpha\beta\)[/tex]):
[tex]\[ \alpha \beta = 2k^4 - 1 \][/tex]
### Step 2: Given condition on the sum of squares of the roots
We are given:
[tex]\[ \alpha^2 + \beta^2 = 66 \][/tex]
Using the identity [tex]\(\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta\)[/tex], we substitute the values obtained from Vieta's formulas:
[tex]\[ \alpha^2 + \beta^2 = (4k\sqrt{2})^2 - 2(\alpha\beta) \][/tex]
[tex]\[ 66 = 16k^2 \cdot 2 - 2(2k^4 - 1) \][/tex]
[tex]\[ 66 = 32k^2 - 4k^4 + 2 \][/tex]
[tex]\[ 64 = 32k^2 - 4k^4 \][/tex]
[tex]\[ 4k^4 - 32k^2 + 64 = 0 \][/tex]
### Step 3: Solve for [tex]\(k\)[/tex]
Divide the entire equation by 4:
[tex]\[ k^4 - 8k^2 + 16 = 0 \][/tex]
This can be treated as a quadratic in terms of [tex]\( k^2 \)[/tex]. Let [tex]\( y = k^2 \)[/tex]:
[tex]\[ y^2 - 8y + 16 = 0 \][/tex]
Solve the quadratic equation:
[tex]\[ y = \frac{8 \pm \sqrt{64 - 64}}{2} = \frac{8 \pm 0}{2} = 4 \][/tex]
Thus:
[tex]\[ k^2 = 4 \][/tex]
[tex]\[ k = 2 \][/tex]
(Because [tex]\( k \)[/tex] is a positive constant)
### Step 4: Finding [tex]\( \alpha^3 + \beta^3 = p\sqrt{2} \)[/tex]
We use the identity:
[tex]\[ \alpha^3 + \beta^3 = (\alpha + \beta)((\alpha^2 + \beta^2) - \alpha\beta) \][/tex]
Substitute the known values:
[tex]\[ \alpha + \beta = 4k\sqrt{2} = 4 \cdot 2 \sqrt{2} = 8\sqrt{2} \][/tex]
[tex]\[ \alpha^2 + \beta^2 = 66 \][/tex]
[tex]\[ \alpha\beta = 2k^4 - 1 = 2 \cdot 2^4 - 1 = 31 \][/tex]
Then:
[tex]\[ \alpha^3 + \beta^3 = (8\sqrt{2}) \left(66 - 31\right) \][/tex]
[tex]\[ \alpha^3 + \beta^3 = 8\sqrt{2} \cdot 35 \][/tex]
[tex]\[ \alpha^3 + \beta^3 = 280\sqrt{2} \][/tex]
Since it is given that [tex]\(\alpha^3 + \beta^3 = p\sqrt{2}\)[/tex], we compare:
[tex]\[ 280\sqrt{2} = p\sqrt{2} \][/tex]
Thus:
[tex]\[ p = 280 \][/tex]
The value of [tex]\( p \)[/tex] is:
[tex]\[ \boxed{280} \][/tex]
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Discover the answers you need at IDNLearn.com. Thank you for visiting, and we hope to see you again for more solutions.