Get the information you need with the help of IDNLearn.com's expert community. Find accurate and detailed answers to your questions from our experienced and dedicated community members.
Sagot :
Sure, let's solve each part step-by-step.
### 2.1 Simplify [tex]\(3 j^{12} + 2 j^{23}\)[/tex] to rectangular form
First, recall that [tex]\( j \)[/tex] is the imaginary unit, defined as [tex]\( j = \sqrt{-1} \)[/tex].
Here's a useful cycle for powers of [tex]\( j \)[/tex]:
- [tex]\( j^1 = j \)[/tex]
- [tex]\( j^2 = -1 \)[/tex]
- [tex]\( j^3 = -j \)[/tex]
- [tex]\( j^4 = 1 \)[/tex]
- This cycle repeats every 4, so [tex]\( j^n = j^{(n \mod 4)} \)[/tex].
Now let's simplify:
- [tex]\( j^{12} \)[/tex]: [tex]\( 12 \mod 4 = 0 \)[/tex] (remainder is 0), so [tex]\( j^{12} = j^0 = 1 \)[/tex].
- [tex]\( j^{23} \)[/tex]: [tex]\( 23 \mod 4 = 3 \)[/tex] (remainder is 3), so [tex]\( j^{23} = j^3 = -j \)[/tex].
Substitute back into the expression:
[tex]\[ 3 j^{12} + 2 j^{23} = 3 \cdot 1 + 2 \cdot (-j) = 3 - 2j \][/tex]
So, the rectangular form of [tex]\( 3 j^{12} + 2 j^{23} \)[/tex] is:
[tex]\[ \boxed{3 - 2j} \][/tex]
### 2.2 Solve for [tex]\(a\)[/tex] and [tex]\(b\)[/tex] if [tex]\( \frac{a}{b} + j(a - b) = 7 + 2j \)[/tex]
Equate the real and imaginary parts on both sides of the equation:
[tex]\[ \text{Real part: } \frac{a}{b} = 7 \][/tex]
[tex]\[ \text{Imaginary part: } a - b = 2 \][/tex]
From the real part:
[tex]\[ \frac{a}{b} = 7 \implies a = 7b \][/tex]
Substitute [tex]\(a = 7b\)[/tex] into the imaginary part:
[tex]\[ 7b - b = 2 \implies 6b = 2 \implies b = \frac{2}{6} = \frac{1}{3} \][/tex]
Now substitute [tex]\(b = \frac{1}{3}\)[/tex] back to find [tex]\(a\)[/tex]:
[tex]\[ a = 7b = 7 \times \frac{1}{3} = \frac{7}{3} \][/tex]
So, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are:
[tex]\[ \boxed{a = \frac{7}{3}, \quad b = \frac{1}{3}} \][/tex]
### 2.3 Convert [tex]\(12 - 5j\)[/tex] to polar form
To convert a complex number [tex]\(z = a + bj\)[/tex] to polar form, use the formula:
[tex]\[ r = \sqrt{a^2 + b^2} \][/tex]
[tex]\[ \theta = \arctan\left(\frac{b}{a}\right) \text{ (in radians)} \][/tex]
For [tex]\(z = 12 - 5j\)[/tex]:
- [tex]\(a = 12\)[/tex]
- [tex]\(b = -5\)[/tex]
Calculate [tex]\(r\)[/tex]:
[tex]\[ r = \sqrt{12^2 + (-5)^2} = \sqrt{144 + 25} = \sqrt{169} = 13 \][/tex]
Calculate [tex]\(\theta\)[/tex]:
[tex]\[ \theta = \arctan\left(\frac{-5}{12}\right) \][/tex]
[tex]\[ \theta \approx \arctan\left(-0.4167\right) \][/tex]
[tex]\[ \theta \approx -0.3927 \text{ radians} \][/tex]
Since we want [tex]\( \theta \)[/tex] to be positive:
[tex]\[ \theta = 2\pi - 0.3927 \approx 5.8905 \text{ radians} \][/tex]
So the polar form of [tex]\(12 - 5j\)[/tex] is:
[tex]\[ \boxed{(13, 5.8905)} \][/tex]
### 2.4 Solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex] using Cramer's rule
Given the system of linear equations:
[tex]\[ 5x + 2y = -19 \][/tex]
[tex]\[ 3x + 4y = -17 \][/tex]
Cramer's rule states that for a system [tex]\( A \mathbf{x} = \mathbf{B} \)[/tex]:
[tex]\[ x = \frac{\det(A_x)}{\det(A)}, \quad y = \frac{\det(A_y)}{\det(A)} \][/tex]
Where [tex]\( A \)[/tex] is the coefficient matrix:
[tex]\[ A = \begin{pmatrix} 5 & 2 \\ 3 & 4 \end{pmatrix} \][/tex]
The determinants are calculated as follows:
1. [tex]\( \det(A) = (5 \cdot 4) - (2 \cdot 3) = 20 - 6 = 14 \)[/tex]
2. [tex]\( \det(A_x) \)[/tex] replaces the first column of [tex]\( A \)[/tex] with vector [tex]\( B \)[/tex]:
[tex]\[ A_x = \begin{pmatrix} -19 & 2 \\ -17 & 4 \end{pmatrix} \][/tex]
[tex]\[ \det(A_x) = (-19 \cdot 4) - (2 \cdot -17) = -76 + 34 = -42 \][/tex]
3. [tex]\( \det(A_y) \)[/tex] replaces the second column of [tex]\( A \)[/tex] with vector [tex]\( B \)[/tex]:
[tex]\[ A_y = \begin{pmatrix} 5 & -19 \\ 3 & -17 \end{pmatrix} \][/tex]
[tex]\[ \det(A_y) = (5 \cdot -17) - (3 \cdot -19) = -85 + 57 = -28 \][/tex]
Now compute [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ x = \frac{\det(A_x)}{\det(A)} = \frac{-42}{14} = -3 \][/tex]
[tex]\[ y = \frac{\det(A_y)}{\det(A)} = \frac{-28}{14} = -2 \][/tex]
So, the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are:
[tex]\[ \boxed{x = -3, \quad y = -2} \][/tex]
### 2.1 Simplify [tex]\(3 j^{12} + 2 j^{23}\)[/tex] to rectangular form
First, recall that [tex]\( j \)[/tex] is the imaginary unit, defined as [tex]\( j = \sqrt{-1} \)[/tex].
Here's a useful cycle for powers of [tex]\( j \)[/tex]:
- [tex]\( j^1 = j \)[/tex]
- [tex]\( j^2 = -1 \)[/tex]
- [tex]\( j^3 = -j \)[/tex]
- [tex]\( j^4 = 1 \)[/tex]
- This cycle repeats every 4, so [tex]\( j^n = j^{(n \mod 4)} \)[/tex].
Now let's simplify:
- [tex]\( j^{12} \)[/tex]: [tex]\( 12 \mod 4 = 0 \)[/tex] (remainder is 0), so [tex]\( j^{12} = j^0 = 1 \)[/tex].
- [tex]\( j^{23} \)[/tex]: [tex]\( 23 \mod 4 = 3 \)[/tex] (remainder is 3), so [tex]\( j^{23} = j^3 = -j \)[/tex].
Substitute back into the expression:
[tex]\[ 3 j^{12} + 2 j^{23} = 3 \cdot 1 + 2 \cdot (-j) = 3 - 2j \][/tex]
So, the rectangular form of [tex]\( 3 j^{12} + 2 j^{23} \)[/tex] is:
[tex]\[ \boxed{3 - 2j} \][/tex]
### 2.2 Solve for [tex]\(a\)[/tex] and [tex]\(b\)[/tex] if [tex]\( \frac{a}{b} + j(a - b) = 7 + 2j \)[/tex]
Equate the real and imaginary parts on both sides of the equation:
[tex]\[ \text{Real part: } \frac{a}{b} = 7 \][/tex]
[tex]\[ \text{Imaginary part: } a - b = 2 \][/tex]
From the real part:
[tex]\[ \frac{a}{b} = 7 \implies a = 7b \][/tex]
Substitute [tex]\(a = 7b\)[/tex] into the imaginary part:
[tex]\[ 7b - b = 2 \implies 6b = 2 \implies b = \frac{2}{6} = \frac{1}{3} \][/tex]
Now substitute [tex]\(b = \frac{1}{3}\)[/tex] back to find [tex]\(a\)[/tex]:
[tex]\[ a = 7b = 7 \times \frac{1}{3} = \frac{7}{3} \][/tex]
So, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are:
[tex]\[ \boxed{a = \frac{7}{3}, \quad b = \frac{1}{3}} \][/tex]
### 2.3 Convert [tex]\(12 - 5j\)[/tex] to polar form
To convert a complex number [tex]\(z = a + bj\)[/tex] to polar form, use the formula:
[tex]\[ r = \sqrt{a^2 + b^2} \][/tex]
[tex]\[ \theta = \arctan\left(\frac{b}{a}\right) \text{ (in radians)} \][/tex]
For [tex]\(z = 12 - 5j\)[/tex]:
- [tex]\(a = 12\)[/tex]
- [tex]\(b = -5\)[/tex]
Calculate [tex]\(r\)[/tex]:
[tex]\[ r = \sqrt{12^2 + (-5)^2} = \sqrt{144 + 25} = \sqrt{169} = 13 \][/tex]
Calculate [tex]\(\theta\)[/tex]:
[tex]\[ \theta = \arctan\left(\frac{-5}{12}\right) \][/tex]
[tex]\[ \theta \approx \arctan\left(-0.4167\right) \][/tex]
[tex]\[ \theta \approx -0.3927 \text{ radians} \][/tex]
Since we want [tex]\( \theta \)[/tex] to be positive:
[tex]\[ \theta = 2\pi - 0.3927 \approx 5.8905 \text{ radians} \][/tex]
So the polar form of [tex]\(12 - 5j\)[/tex] is:
[tex]\[ \boxed{(13, 5.8905)} \][/tex]
### 2.4 Solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex] using Cramer's rule
Given the system of linear equations:
[tex]\[ 5x + 2y = -19 \][/tex]
[tex]\[ 3x + 4y = -17 \][/tex]
Cramer's rule states that for a system [tex]\( A \mathbf{x} = \mathbf{B} \)[/tex]:
[tex]\[ x = \frac{\det(A_x)}{\det(A)}, \quad y = \frac{\det(A_y)}{\det(A)} \][/tex]
Where [tex]\( A \)[/tex] is the coefficient matrix:
[tex]\[ A = \begin{pmatrix} 5 & 2 \\ 3 & 4 \end{pmatrix} \][/tex]
The determinants are calculated as follows:
1. [tex]\( \det(A) = (5 \cdot 4) - (2 \cdot 3) = 20 - 6 = 14 \)[/tex]
2. [tex]\( \det(A_x) \)[/tex] replaces the first column of [tex]\( A \)[/tex] with vector [tex]\( B \)[/tex]:
[tex]\[ A_x = \begin{pmatrix} -19 & 2 \\ -17 & 4 \end{pmatrix} \][/tex]
[tex]\[ \det(A_x) = (-19 \cdot 4) - (2 \cdot -17) = -76 + 34 = -42 \][/tex]
3. [tex]\( \det(A_y) \)[/tex] replaces the second column of [tex]\( A \)[/tex] with vector [tex]\( B \)[/tex]:
[tex]\[ A_y = \begin{pmatrix} 5 & -19 \\ 3 & -17 \end{pmatrix} \][/tex]
[tex]\[ \det(A_y) = (5 \cdot -17) - (3 \cdot -19) = -85 + 57 = -28 \][/tex]
Now compute [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ x = \frac{\det(A_x)}{\det(A)} = \frac{-42}{14} = -3 \][/tex]
[tex]\[ y = \frac{\det(A_y)}{\det(A)} = \frac{-28}{14} = -2 \][/tex]
So, the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are:
[tex]\[ \boxed{x = -3, \quad y = -2} \][/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Your questions deserve precise answers. Thank you for visiting IDNLearn.com, and see you again soon for more helpful information.