IDNLearn.com makes it easy to find the right answers to your questions. Join our interactive community and access reliable, detailed answers from experienced professionals across a variety of topics.
Sagot :
Sure! Let's solve the problem step-by-step:
### Given Data:
1. Radius of each cylinder: [tex]\( r = 0.25 \, \text{cm} = 0.25 \times 10^{-2} \, \text{m} = 0.0025 \, \text{m} \)[/tex]
2. Compressive force: [tex]\( F = 6500 \, \text{N} \)[/tex]
3. Young's Modulus for Copper (Y_copper): [tex]\( Y_{\text{copper}} = 1.1 \times 10^{11} \, \text{Pa} \)[/tex]
4. Young's Modulus for Brass (Y_brass): [tex]\( Y_{\text{brass}} = 9.0 \times 10^{10} \, \text{Pa} \)[/tex]
5. Original length of the Copper cylinder (L0_copper): [tex]\( L0_{\text{copper}} = 0.03 \, \text{m} \)[/tex]
6. Original length of the Brass cylinder (L0_brass): [tex]\( L0_{\text{brass}} = 0.03 \, \text{m} \)[/tex]
### Step-by-Step Solution:
1. Calculate the cross-sectional area (A) of each cylinder:
[tex]\[ A = \pi r^2 = \pi (0.0025 \, \text{m})^2 = \pi \times 6.25 \times 10^{-6} \, \text{m}^2 = 1.963495408 \times 10^{-5} \, \text{m}^2. \][/tex]
2. Calculate the deformation (ΔL) for the copper cylinder:
[tex]\[ \Delta L_{\text{copper}} = \frac{F \cdot L0_{\text{copper}}}{Y_{\text{copper}} \cdot A} \][/tex]
Substitute the values:
[tex]\[ \Delta L_{\text{copper}} = \frac{6500 \, \text{N} \times 0.03 \, \text{m}}{1.1 \times 10^{11} \, \text{Pa} \times 1.963495408 \times 10^{-5} \, \text{m}^2}. \][/tex]
[tex]\[ \Delta L_{\text{copper}} \approx 9.028425862667518 \times 10^{-5} \, \text{m} = 0.000090284 \, \text{m}. \][/tex]
3. Calculate the deformation (ΔL) for the brass cylinder:
[tex]\[ \Delta L_{\text{brass}} = \frac{F \cdot L0_{\text{brass}}}{Y_{\text{brass}} \cdot A} \][/tex]
Substitute the values:
[tex]\[ \Delta L_{\text{brass}} = \frac{6500 \, \text{N} \times 0.03 \, \text{m}}{9.0 \times 10^{10} \, \text{Pa} \times 1.963495408 \times 10^{-5} \, \text{m}^2}. \][/tex]
[tex]\[ \Delta L_{\text{brass}} \approx 0.00011034742721038078 \, \text{m} = 0.000110347 \, \text{m}. \][/tex]
4. Calculate the total decrease in length of the stack:
[tex]\[ \Delta L_{\text{total}} = \Delta L_{\text{copper}} + \Delta L_{\text{brass}} \][/tex]
[tex]\[ \Delta L_{\text{total}} = 0.000090284 \, \text{m} + 0.000110347 \, \text{m}. \][/tex]
[tex]\[ \Delta L_{\text{total}} \approx 0.00020063168583705595 \, \text{m} = 0.000200632 \, \text{m}. \][/tex]
### Conclusion:
The amount by which the length of the stack decreases is approximately [tex]\(0.000200632 \, \text{m}\)[/tex] or [tex]\(0.20063 \, \text{mm}\)[/tex].
### Given Data:
1. Radius of each cylinder: [tex]\( r = 0.25 \, \text{cm} = 0.25 \times 10^{-2} \, \text{m} = 0.0025 \, \text{m} \)[/tex]
2. Compressive force: [tex]\( F = 6500 \, \text{N} \)[/tex]
3. Young's Modulus for Copper (Y_copper): [tex]\( Y_{\text{copper}} = 1.1 \times 10^{11} \, \text{Pa} \)[/tex]
4. Young's Modulus for Brass (Y_brass): [tex]\( Y_{\text{brass}} = 9.0 \times 10^{10} \, \text{Pa} \)[/tex]
5. Original length of the Copper cylinder (L0_copper): [tex]\( L0_{\text{copper}} = 0.03 \, \text{m} \)[/tex]
6. Original length of the Brass cylinder (L0_brass): [tex]\( L0_{\text{brass}} = 0.03 \, \text{m} \)[/tex]
### Step-by-Step Solution:
1. Calculate the cross-sectional area (A) of each cylinder:
[tex]\[ A = \pi r^2 = \pi (0.0025 \, \text{m})^2 = \pi \times 6.25 \times 10^{-6} \, \text{m}^2 = 1.963495408 \times 10^{-5} \, \text{m}^2. \][/tex]
2. Calculate the deformation (ΔL) for the copper cylinder:
[tex]\[ \Delta L_{\text{copper}} = \frac{F \cdot L0_{\text{copper}}}{Y_{\text{copper}} \cdot A} \][/tex]
Substitute the values:
[tex]\[ \Delta L_{\text{copper}} = \frac{6500 \, \text{N} \times 0.03 \, \text{m}}{1.1 \times 10^{11} \, \text{Pa} \times 1.963495408 \times 10^{-5} \, \text{m}^2}. \][/tex]
[tex]\[ \Delta L_{\text{copper}} \approx 9.028425862667518 \times 10^{-5} \, \text{m} = 0.000090284 \, \text{m}. \][/tex]
3. Calculate the deformation (ΔL) for the brass cylinder:
[tex]\[ \Delta L_{\text{brass}} = \frac{F \cdot L0_{\text{brass}}}{Y_{\text{brass}} \cdot A} \][/tex]
Substitute the values:
[tex]\[ \Delta L_{\text{brass}} = \frac{6500 \, \text{N} \times 0.03 \, \text{m}}{9.0 \times 10^{10} \, \text{Pa} \times 1.963495408 \times 10^{-5} \, \text{m}^2}. \][/tex]
[tex]\[ \Delta L_{\text{brass}} \approx 0.00011034742721038078 \, \text{m} = 0.000110347 \, \text{m}. \][/tex]
4. Calculate the total decrease in length of the stack:
[tex]\[ \Delta L_{\text{total}} = \Delta L_{\text{copper}} + \Delta L_{\text{brass}} \][/tex]
[tex]\[ \Delta L_{\text{total}} = 0.000090284 \, \text{m} + 0.000110347 \, \text{m}. \][/tex]
[tex]\[ \Delta L_{\text{total}} \approx 0.00020063168583705595 \, \text{m} = 0.000200632 \, \text{m}. \][/tex]
### Conclusion:
The amount by which the length of the stack decreases is approximately [tex]\(0.000200632 \, \text{m}\)[/tex] or [tex]\(0.20063 \, \text{mm}\)[/tex].
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to assisting you again.