Join IDNLearn.com and start getting the answers you've been searching for. Our platform provides accurate, detailed responses to help you navigate any topic with ease.
Sagot :
To find the inverse Laplace transform of [tex]\(\frac{4s}{4s^2 + 1}\)[/tex], we can use standard techniques and known transforms. Here's a detailed, step-by-step solution:
Given:
[tex]\[ L^{-1}\left(\frac{4s}{4s^2 + 1}\right) \][/tex]
First, let's simplify the given expression. Notice that the denominator can be factored as follows:
[tex]\[ 4s^2 + 1 = \left(2s\right)^2 + 1 \][/tex]
Thus, the given fraction can be rewritten as:
[tex]\[ \frac{4s}{4s^2 + 1} = \frac{4s}{(2s)^2 + 1} \][/tex]
Now, let's factor out constants to further simplify this:
[tex]\[ \frac{4s}{(2s)^2 + 1} = \frac{4 \cdot s}{4 \cdot (\left(\frac{2s}{2}\right)^2 + 1)} = \frac{4s}{4((\frac{2s}{2})^2 + 1)} = \frac{4s}{4} \cdot \frac{1}{\left(\frac{2s}{2}\right)^2 + 1} = s \cdot \frac{1}{\left(\frac{2s}{2}\right)^2 + 1} \][/tex]
Therefore, we simplify to:
[tex]\[ \frac{4s}{4s^2 + 1} = s \cdot \frac{1}{(2s)^2 + 1} \][/tex]
We now recognize that this is in the form [tex]\( s \cdot \frac{1}{s^2 + \alpha^2} \)[/tex], where [tex]\(\alpha = 1/2\)[/tex].
Recall the inverse Laplace transform for the standard form:
[tex]\[ L^{-1}\left(\frac{s}{s^2 + \alpha^2}\right) = \cos(\alpha t) \][/tex]
In our case, [tex]\(\alpha = \frac{1}{2}\)[/tex], so we have:
[tex]\[ L^{-1}\left(\frac{s}{s^2 + \left(\frac{1}{2}\right)^2}\right) = \cos\left(\frac{1}{2}t\right) \][/tex]
So, the inverse Laplace transform is:
[tex]\[ L^{-1}\left(\frac{4s}{4s^2 + 1}\right) = \cos\left(\frac{1}{2}t\right) \][/tex]
Thus, the solution is:
[tex]\[ \boxed{\cos\left(\frac{1}{2}t\right)} \][/tex]
Given:
[tex]\[ L^{-1}\left(\frac{4s}{4s^2 + 1}\right) \][/tex]
First, let's simplify the given expression. Notice that the denominator can be factored as follows:
[tex]\[ 4s^2 + 1 = \left(2s\right)^2 + 1 \][/tex]
Thus, the given fraction can be rewritten as:
[tex]\[ \frac{4s}{4s^2 + 1} = \frac{4s}{(2s)^2 + 1} \][/tex]
Now, let's factor out constants to further simplify this:
[tex]\[ \frac{4s}{(2s)^2 + 1} = \frac{4 \cdot s}{4 \cdot (\left(\frac{2s}{2}\right)^2 + 1)} = \frac{4s}{4((\frac{2s}{2})^2 + 1)} = \frac{4s}{4} \cdot \frac{1}{\left(\frac{2s}{2}\right)^2 + 1} = s \cdot \frac{1}{\left(\frac{2s}{2}\right)^2 + 1} \][/tex]
Therefore, we simplify to:
[tex]\[ \frac{4s}{4s^2 + 1} = s \cdot \frac{1}{(2s)^2 + 1} \][/tex]
We now recognize that this is in the form [tex]\( s \cdot \frac{1}{s^2 + \alpha^2} \)[/tex], where [tex]\(\alpha = 1/2\)[/tex].
Recall the inverse Laplace transform for the standard form:
[tex]\[ L^{-1}\left(\frac{s}{s^2 + \alpha^2}\right) = \cos(\alpha t) \][/tex]
In our case, [tex]\(\alpha = \frac{1}{2}\)[/tex], so we have:
[tex]\[ L^{-1}\left(\frac{s}{s^2 + \left(\frac{1}{2}\right)^2}\right) = \cos\left(\frac{1}{2}t\right) \][/tex]
So, the inverse Laplace transform is:
[tex]\[ L^{-1}\left(\frac{4s}{4s^2 + 1}\right) = \cos\left(\frac{1}{2}t\right) \][/tex]
Thus, the solution is:
[tex]\[ \boxed{\cos\left(\frac{1}{2}t\right)} \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thanks for visiting IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more helpful information.