Find solutions to your problems with the expert advice available on IDNLearn.com. Find reliable solutions to your questions quickly and easily with help from our experienced experts.
Sagot :
To find the inverse Laplace transform of [tex]\(\frac{4s}{4s^2 + 1}\)[/tex], we can use standard techniques and known transforms. Here's a detailed, step-by-step solution:
Given:
[tex]\[ L^{-1}\left(\frac{4s}{4s^2 + 1}\right) \][/tex]
First, let's simplify the given expression. Notice that the denominator can be factored as follows:
[tex]\[ 4s^2 + 1 = \left(2s\right)^2 + 1 \][/tex]
Thus, the given fraction can be rewritten as:
[tex]\[ \frac{4s}{4s^2 + 1} = \frac{4s}{(2s)^2 + 1} \][/tex]
Now, let's factor out constants to further simplify this:
[tex]\[ \frac{4s}{(2s)^2 + 1} = \frac{4 \cdot s}{4 \cdot (\left(\frac{2s}{2}\right)^2 + 1)} = \frac{4s}{4((\frac{2s}{2})^2 + 1)} = \frac{4s}{4} \cdot \frac{1}{\left(\frac{2s}{2}\right)^2 + 1} = s \cdot \frac{1}{\left(\frac{2s}{2}\right)^2 + 1} \][/tex]
Therefore, we simplify to:
[tex]\[ \frac{4s}{4s^2 + 1} = s \cdot \frac{1}{(2s)^2 + 1} \][/tex]
We now recognize that this is in the form [tex]\( s \cdot \frac{1}{s^2 + \alpha^2} \)[/tex], where [tex]\(\alpha = 1/2\)[/tex].
Recall the inverse Laplace transform for the standard form:
[tex]\[ L^{-1}\left(\frac{s}{s^2 + \alpha^2}\right) = \cos(\alpha t) \][/tex]
In our case, [tex]\(\alpha = \frac{1}{2}\)[/tex], so we have:
[tex]\[ L^{-1}\left(\frac{s}{s^2 + \left(\frac{1}{2}\right)^2}\right) = \cos\left(\frac{1}{2}t\right) \][/tex]
So, the inverse Laplace transform is:
[tex]\[ L^{-1}\left(\frac{4s}{4s^2 + 1}\right) = \cos\left(\frac{1}{2}t\right) \][/tex]
Thus, the solution is:
[tex]\[ \boxed{\cos\left(\frac{1}{2}t\right)} \][/tex]
Given:
[tex]\[ L^{-1}\left(\frac{4s}{4s^2 + 1}\right) \][/tex]
First, let's simplify the given expression. Notice that the denominator can be factored as follows:
[tex]\[ 4s^2 + 1 = \left(2s\right)^2 + 1 \][/tex]
Thus, the given fraction can be rewritten as:
[tex]\[ \frac{4s}{4s^2 + 1} = \frac{4s}{(2s)^2 + 1} \][/tex]
Now, let's factor out constants to further simplify this:
[tex]\[ \frac{4s}{(2s)^2 + 1} = \frac{4 \cdot s}{4 \cdot (\left(\frac{2s}{2}\right)^2 + 1)} = \frac{4s}{4((\frac{2s}{2})^2 + 1)} = \frac{4s}{4} \cdot \frac{1}{\left(\frac{2s}{2}\right)^2 + 1} = s \cdot \frac{1}{\left(\frac{2s}{2}\right)^2 + 1} \][/tex]
Therefore, we simplify to:
[tex]\[ \frac{4s}{4s^2 + 1} = s \cdot \frac{1}{(2s)^2 + 1} \][/tex]
We now recognize that this is in the form [tex]\( s \cdot \frac{1}{s^2 + \alpha^2} \)[/tex], where [tex]\(\alpha = 1/2\)[/tex].
Recall the inverse Laplace transform for the standard form:
[tex]\[ L^{-1}\left(\frac{s}{s^2 + \alpha^2}\right) = \cos(\alpha t) \][/tex]
In our case, [tex]\(\alpha = \frac{1}{2}\)[/tex], so we have:
[tex]\[ L^{-1}\left(\frac{s}{s^2 + \left(\frac{1}{2}\right)^2}\right) = \cos\left(\frac{1}{2}t\right) \][/tex]
So, the inverse Laplace transform is:
[tex]\[ L^{-1}\left(\frac{4s}{4s^2 + 1}\right) = \cos\left(\frac{1}{2}t\right) \][/tex]
Thus, the solution is:
[tex]\[ \boxed{\cos\left(\frac{1}{2}t\right)} \][/tex]
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Your questions deserve precise answers. Thank you for visiting IDNLearn.com, and see you again soon for more helpful information.