IDNLearn.com: Your one-stop destination for reliable answers to diverse questions. Get accurate and comprehensive answers from our network of experienced professionals.

Calculate the change in the kinetic energy (KE) of the bottle when the mass is increased. Use the formula [tex]KE = \frac{1}{2} mv^2[/tex], where [tex]m[/tex] is the mass and [tex]v[/tex] is the speed (velocity). Assume that the speed of the soda bottle falling from a height of [tex]0.8 \, m[/tex] will be [tex]4 \, m/s[/tex], and use this speed for each calculation.

Record your calculations in Table A of your Student Guide.

1. When the mass of the bottle is [tex]0.125 \, kg[/tex], the [tex]KE[/tex] is [tex]\square \, kg \cdot m^2 / s^2[/tex].
2. When the mass of the bottle is [tex]0.250 \, kg[/tex], the [tex]KE[/tex] is [tex]\square \, kg \cdot m^2 / s^2[/tex].
3. When the mass of the bottle is [tex]0.375 \, kg[/tex], the [tex]KE[/tex] is [tex]\square \, kg \cdot m^2 / s^2[/tex].
4. When the mass of the bottle is [tex]0.500 \, kg[/tex], the [tex]KE[/tex] is [tex]\square \, kg \cdot m^2 / s^2[/tex].


Sagot :

To calculate the kinetic energy (KE) of a bottle using the formula [tex]\( \text{KE} = \frac{1}{2}mv^2 \)[/tex], we will substitute the given values for the mass ([tex]\(m\)[/tex]) and the speed ([tex]\(v\)[/tex]). The speed is given as [tex]\(4 \text{ m/s}\)[/tex]. Let's compute the kinetic energy for each mass provided.

1. When the mass of the bottle is [tex]\(0.125 \text{ kg}\)[/tex]:
[tex]\[ \text{KE} = \frac{1}{2} \times 0.125 \text{ kg} \times (4 \text{ m/s})^2 \][/tex]
[tex]\[ \text{KE} = \frac{1}{2} \times 0.125 \times 16 \][/tex]
[tex]\[ \text{KE} = \frac{1}{2} \times 2 \][/tex]
[tex]\[ \text{KE} = 1.0 \text{ kg} \cdot \text{m}^2 / \text{s}^2 \][/tex]

2. When the mass of the bottle is [tex]\(0.250 \text{ kg}\)[/tex]:
[tex]\[ \text{KE} = \frac{1}{2} \times 0.250 \text{ kg} \times (4 \text{ m/s})^2 \][/tex]
[tex]\[ \text{KE} = \frac{1}{2} \times 0.250 \times 16 \][/tex]
[tex]\[ \text{KE} = \frac{1}{2} \times 4 \][/tex]
[tex]\[ \text{KE} = 2.0 \text{ kg} \cdot \text{m}^2 / \text{s}^2 \][/tex]

3. When the mass of the bottle is [tex]\(0.375 \text{ kg}\)[/tex]:
[tex]\[ \text{KE} = \frac{1}{2} \times 0.375 \text{ kg} \times (4 \text{ m/s})^2 \][/tex]
[tex]\[ \text{KE} = \frac{1}{2} \times 0.375 \times 16 \][/tex]
[tex]\[ \text{KE} = \frac{1}{2} \times 6 \][/tex]
[tex]\[ \text{KE} = 3.0 \text{ kg} \cdot \text{m}^2 / \text{s}^2 \][/tex]

4. When the mass of the bottle is [tex]\(0.500 \text{ kg}\)[/tex]:
[tex]\[ \text{KE} = \frac{1}{2} \times 0.500 \text{ kg} \times (4 \text{ m/s})^2 \][/tex]
[tex]\[ \text{KE} = \frac{1}{2} \times 0.500 \times 16 \][/tex]
[tex]\[ \text{KE} = \frac{1}{2} \times 8 \][/tex]
[tex]\[ \text{KE} = 4.0 \text{ kg} \cdot \text{m}^2 / \text{s}^2 \][/tex]

So, recording the calculations:
- When the mass of the bottle is [tex]\(0.125 \text{ kg}\)[/tex], the KE is [tex]\(1.0 \text{ kg} \cdot \text{m}^2 / \text{s}^2\)[/tex].
- When the mass of the bottle is [tex]\(0.250 \text{ kg}\)[/tex], the KE is [tex]\(2.0 \text{ kg} \cdot \text{m}^2 / \text{s}^2\)[/tex].
- When the mass of the bottle is [tex]\(0.375 \text{ kg}\)[/tex], the KE is [tex]\(3.0 \text{ kg} \cdot \text{m}^2 / \text{s}^2\)[/tex].
- When the mass of the bottle is [tex]\(0.500 \text{ kg}\)[/tex], the KE is [tex]\(4.0 \text{ kg} \cdot \text{m}^2 / \text{s}^2\)[/tex].