Find answers to your questions and expand your knowledge with IDNLearn.com. Discover in-depth and trustworthy answers from our extensive network of knowledgeable professionals.
Sagot :
To determine the wavelength of a photon with an energy of [tex]\( 3.38 \times 10^{-19} \)[/tex] joules, we can use the relationship between energy [tex]\(E\)[/tex], Planck's constant [tex]\(h\)[/tex], and the speed of light [tex]\(c\)[/tex]. The formula to find the wavelength [tex]\(\lambda\)[/tex] of a photon is given by:
[tex]\[ \lambda = \frac{h \cdot c}{E} \][/tex]
where:
- [tex]\(E\)[/tex] is the energy of the photon,
- [tex]\(h\)[/tex] is Planck's constant ([tex]\(6.626 \times 10^{-34}\)[/tex] joule seconds),
- [tex]\(c\)[/tex] is the speed of light ([tex]\(3.00 \times 10^8\)[/tex] meters per second).
Step-by-Step Solution:
1. Identify the given values:
- Energy [tex]\(E = 3.38 \times 10^{-19}\)[/tex] joules
- Planck's constant [tex]\(h = 6.626 \times 10^{-34}\)[/tex] joule seconds
- Speed of light [tex]\(c = 3.00 \times 10^8\)[/tex] meters per second
2. Plug the values into the wavelength formula:
[tex]\[ \lambda = \frac{6.626 \times 10^{-34} \, \text{Js} \times 3.00 \times 10^8 \, \text{m/s}}{3.38 \times 10^{-19} \, \text{J}} \][/tex]
3. Calculate the wavelength [tex]\(\lambda\)[/tex]:
[tex]\[ \lambda = \frac{1.9878 \times 10^{-25} \, \text{Js} \cdot \text{m/s}}{3.38 \times 10^{-19} \, \text{J}} \][/tex]
[tex]\[ \lambda = 5.881 \times 10^{-7} \, \text{m} \][/tex]
4. Convert the wavelength from meters to nanometers:
[tex]\[ 1 \, \text{m} = 10^9 \, \text{nm} \][/tex]
[tex]\[ \lambda = 5.881 \times 10^{-7} \, \text{m} \times 10^9 \, \text{nm/m} \][/tex]
[tex]\[ \lambda = 588.1 \, \text{nm} \][/tex]
5. Compare the calculated wavelength to the given choices:
- A. [tex]\(510 \, \text{nm}\)[/tex]
- B. [tex]\(460 \, \text{nm}\)[/tex]
- C. [tex]\(588 \, \text{nm}\)[/tex]
- D. [tex]\(416 \, \text{nm}\)[/tex]
The wavelength most closely matches option C: [tex]\(588 \, \text{nm}\)[/tex].
Therefore, the correct answer is:
C. [tex]\(588 \, \text{nm}\)[/tex]
[tex]\[ \lambda = \frac{h \cdot c}{E} \][/tex]
where:
- [tex]\(E\)[/tex] is the energy of the photon,
- [tex]\(h\)[/tex] is Planck's constant ([tex]\(6.626 \times 10^{-34}\)[/tex] joule seconds),
- [tex]\(c\)[/tex] is the speed of light ([tex]\(3.00 \times 10^8\)[/tex] meters per second).
Step-by-Step Solution:
1. Identify the given values:
- Energy [tex]\(E = 3.38 \times 10^{-19}\)[/tex] joules
- Planck's constant [tex]\(h = 6.626 \times 10^{-34}\)[/tex] joule seconds
- Speed of light [tex]\(c = 3.00 \times 10^8\)[/tex] meters per second
2. Plug the values into the wavelength formula:
[tex]\[ \lambda = \frac{6.626 \times 10^{-34} \, \text{Js} \times 3.00 \times 10^8 \, \text{m/s}}{3.38 \times 10^{-19} \, \text{J}} \][/tex]
3. Calculate the wavelength [tex]\(\lambda\)[/tex]:
[tex]\[ \lambda = \frac{1.9878 \times 10^{-25} \, \text{Js} \cdot \text{m/s}}{3.38 \times 10^{-19} \, \text{J}} \][/tex]
[tex]\[ \lambda = 5.881 \times 10^{-7} \, \text{m} \][/tex]
4. Convert the wavelength from meters to nanometers:
[tex]\[ 1 \, \text{m} = 10^9 \, \text{nm} \][/tex]
[tex]\[ \lambda = 5.881 \times 10^{-7} \, \text{m} \times 10^9 \, \text{nm/m} \][/tex]
[tex]\[ \lambda = 588.1 \, \text{nm} \][/tex]
5. Compare the calculated wavelength to the given choices:
- A. [tex]\(510 \, \text{nm}\)[/tex]
- B. [tex]\(460 \, \text{nm}\)[/tex]
- C. [tex]\(588 \, \text{nm}\)[/tex]
- D. [tex]\(416 \, \text{nm}\)[/tex]
The wavelength most closely matches option C: [tex]\(588 \, \text{nm}\)[/tex].
Therefore, the correct answer is:
C. [tex]\(588 \, \text{nm}\)[/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Discover the answers you need at IDNLearn.com. Thanks for visiting, and come back soon for more valuable insights.