Get the answers you've been looking for with the help of IDNLearn.com's expert community. Get prompt and accurate answers to your questions from our experts who are always ready to help.
Sagot :
To determine the Gibbs free energy change ([tex]\(\Delta G_{\text{system}}\)[/tex]) for the given system, we can use the formula:
[tex]\[ \Delta G_{\text{system}} = \Delta H_{\text{system}} - T \Delta S_{\text{system}} \][/tex]
Here are the given values:
- [tex]\(\Delta H_{\text{system}} = -232 \, \text{kJ}\)[/tex]
- [tex]\(T = 293 \, \text{K}\)[/tex]
- [tex]\(\Delta S_{\text{system}} = 195 \, \text{J/K}\)[/tex]
First, we need to ensure that the units are consistent. Notably, [tex]\(\Delta H_{\text{system}}\)[/tex] is in kilojoules (kJ) and [tex]\(\Delta S_{\text{system}}\)[/tex] is in joules per Kelvin (J/K). Hence, we need to convert [tex]\(\Delta S_{\text{system}}\)[/tex] from joules to kilojoules:
[tex]\[ \Delta S_{\text{system}} = 195 \, \text{J/K} = 0.195 \, \text{kJ/K} \][/tex]
(This is done by dividing 195 by 1000 because there are 1000 joules in a kilojoule.)
Now we can plug these values into the [tex]\(\Delta G_{\text{system}}\)[/tex] formula:
[tex]\[ \Delta G_{\text{system}} = \Delta H_{\text{system}} - T \Delta S_{\text{system}} \][/tex]
[tex]\[ \Delta G_{\text{system}} = -232 \, \text{kJ} - 293 \times 0.195 \, \text{kJ/K} \][/tex]
Next, let's calculate the term [tex]\(T \Delta S_{\text{system}}\)[/tex]:
[tex]\[ 293 \times 0.195 = 57.135 \, \text{kJ} \][/tex]
Finally, we subtract this value from [tex]\(\Delta H_{\text{system}}\)[/tex]:
[tex]\[ \Delta G_{\text{system}} = -232 \, \text{kJ} - 57.135 \, \text{kJ} \][/tex]
[tex]\[ \Delta G_{\text{system}} = -232 - 57.135 \][/tex]
[tex]\[ \Delta G_{\text{system}} = -289.135 \, \text{kJ} \][/tex]
Hence, the correct value of [tex]\(\Delta G_{\text{system}}\)[/tex] is [tex]\(-289 \, \text{kJ}\)[/tex], which matches the first option. The closest numerical answer provided in the options and the true Gibbs free energy value is:
[tex]\[ -289 \, \text{kJ} \][/tex]
So, the answer is:
[tex]\[ -289 \, \text{kJ} \][/tex]
[tex]\[ \Delta G_{\text{system}} = \Delta H_{\text{system}} - T \Delta S_{\text{system}} \][/tex]
Here are the given values:
- [tex]\(\Delta H_{\text{system}} = -232 \, \text{kJ}\)[/tex]
- [tex]\(T = 293 \, \text{K}\)[/tex]
- [tex]\(\Delta S_{\text{system}} = 195 \, \text{J/K}\)[/tex]
First, we need to ensure that the units are consistent. Notably, [tex]\(\Delta H_{\text{system}}\)[/tex] is in kilojoules (kJ) and [tex]\(\Delta S_{\text{system}}\)[/tex] is in joules per Kelvin (J/K). Hence, we need to convert [tex]\(\Delta S_{\text{system}}\)[/tex] from joules to kilojoules:
[tex]\[ \Delta S_{\text{system}} = 195 \, \text{J/K} = 0.195 \, \text{kJ/K} \][/tex]
(This is done by dividing 195 by 1000 because there are 1000 joules in a kilojoule.)
Now we can plug these values into the [tex]\(\Delta G_{\text{system}}\)[/tex] formula:
[tex]\[ \Delta G_{\text{system}} = \Delta H_{\text{system}} - T \Delta S_{\text{system}} \][/tex]
[tex]\[ \Delta G_{\text{system}} = -232 \, \text{kJ} - 293 \times 0.195 \, \text{kJ/K} \][/tex]
Next, let's calculate the term [tex]\(T \Delta S_{\text{system}}\)[/tex]:
[tex]\[ 293 \times 0.195 = 57.135 \, \text{kJ} \][/tex]
Finally, we subtract this value from [tex]\(\Delta H_{\text{system}}\)[/tex]:
[tex]\[ \Delta G_{\text{system}} = -232 \, \text{kJ} - 57.135 \, \text{kJ} \][/tex]
[tex]\[ \Delta G_{\text{system}} = -232 - 57.135 \][/tex]
[tex]\[ \Delta G_{\text{system}} = -289.135 \, \text{kJ} \][/tex]
Hence, the correct value of [tex]\(\Delta G_{\text{system}}\)[/tex] is [tex]\(-289 \, \text{kJ}\)[/tex], which matches the first option. The closest numerical answer provided in the options and the true Gibbs free energy value is:
[tex]\[ -289 \, \text{kJ} \][/tex]
So, the answer is:
[tex]\[ -289 \, \text{kJ} \][/tex]
Your participation is crucial to us. Keep sharing your knowledge and experiences. Let's create a learning environment that is both enjoyable and beneficial. IDNLearn.com is your source for precise answers. Thank you for visiting, and we look forward to helping you again soon.