Discover how IDNLearn.com can help you find the answers you need quickly and easily. Our platform offers detailed and accurate responses from experts, helping you navigate any topic with confidence.
Sagot :
Sure, let's find [tex]\(\log_4(5)\)[/tex] using the change-of-base theorem.
The change-of-base theorem states that for any positive numbers [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] where [tex]\( b \neq 1 \)[/tex] and [tex]\( c \neq 1 \)[/tex]:
[tex]\[ \log_b(a) = \frac{\log_c(a)}{\log_c(b)} \][/tex]
In this problem, we're looking to find [tex]\(\log_4(5)\)[/tex]. We can choose any base [tex]\(c\)[/tex] for our logarithms, but it’s common to use the base 10 (common logarithm) or base [tex]\(e\)[/tex] (natural logarithm). Here, we'll use base 10.
Applying the change-of-base theorem:
[tex]\[ \log_4(5) = \frac{\log_{10}(5)}{\log_{10}(4)} \][/tex]
Now, we need to find the values of [tex]\(\log_{10}(5)\)[/tex] and [tex]\(\log_{10}(4)\)[/tex].
By calculation:
[tex]\[ \log_{10}(5) \approx 0.6989700043360187 \][/tex]
[tex]\[ \log_{10}(4) \approx 0.6020599913279623 \][/tex]
So, substituting these values into the formula:
[tex]\[ \log_4(5) = \frac{0.6989700043360187}{0.6020599913279623} \approx 1.1609640474436813 \][/tex]
Therefore, [tex]\(\log_4(5) \approx 1.1609640474436813\)[/tex].
The change-of-base theorem states that for any positive numbers [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] where [tex]\( b \neq 1 \)[/tex] and [tex]\( c \neq 1 \)[/tex]:
[tex]\[ \log_b(a) = \frac{\log_c(a)}{\log_c(b)} \][/tex]
In this problem, we're looking to find [tex]\(\log_4(5)\)[/tex]. We can choose any base [tex]\(c\)[/tex] for our logarithms, but it’s common to use the base 10 (common logarithm) or base [tex]\(e\)[/tex] (natural logarithm). Here, we'll use base 10.
Applying the change-of-base theorem:
[tex]\[ \log_4(5) = \frac{\log_{10}(5)}{\log_{10}(4)} \][/tex]
Now, we need to find the values of [tex]\(\log_{10}(5)\)[/tex] and [tex]\(\log_{10}(4)\)[/tex].
By calculation:
[tex]\[ \log_{10}(5) \approx 0.6989700043360187 \][/tex]
[tex]\[ \log_{10}(4) \approx 0.6020599913279623 \][/tex]
So, substituting these values into the formula:
[tex]\[ \log_4(5) = \frac{0.6989700043360187}{0.6020599913279623} \approx 1.1609640474436813 \][/tex]
Therefore, [tex]\(\log_4(5) \approx 1.1609640474436813\)[/tex].
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com provides the best answers to your questions. Thank you for visiting, and come back soon for more helpful information.