Join the IDNLearn.com community and start finding the answers you need today. Whether it's a simple query or a complex problem, our experts have the answers you need.
Sagot :
Alright, let's work through this integral step-by-step together.
We are given the following integral:
[tex]\[ \int_x^{80} e^{2 - t} \, dt \][/tex]
Here, [tex]\( t \)[/tex] is the variable of integration, and the limits of integration are from [tex]\( x \)[/tex] to 80. Let's proceed by solving this definite integral.
1. Determine the antiderivative:
The integrand [tex]\( e^{2 - t} \)[/tex] can be integrated using the standard rules for integration of exponential functions. We start by noting that the integral of [tex]\( e^{kt} \)[/tex] is [tex]\(\frac{1}{k} e^{kt} \)[/tex] for some constant [tex]\( k \)[/tex]. To utilize this, let's perform a substitution.
Let:
[tex]\[ u = 2 - t \][/tex]
Then, the differential [tex]\( du = -dt \)[/tex], or [tex]\( dt = -du \)[/tex].
2. Substitute and integrate:
Substituting [tex]\( u = 2 - t \)[/tex], the integral becomes:
[tex]\[ \int_x^{80} e^{2 - t} \, dt = \int_{x}^{80} e^{u} \cdot (-du) \][/tex]
Removing the negative sign and adjusting the limits for the substitution, we get:
[tex]\[ = -\int_{2 - x}^{2 - 80} e^{u} \, du \][/tex]
The limits of integration are now adjusted to [tex]\( 2 - x \)[/tex] to [tex]\( 2 - 80 \)[/tex].
Simplifying the limits:
[tex]\[ -\int_{2 - x}^{-78} e^{u} \, du \][/tex]
3. Resolve the integral:
The integral of [tex]\( e^u \)[/tex] is just [tex]\( e^u \)[/tex]. Hence, integrating from [tex]\( 2 - x \)[/tex] to [tex]\( -78 \)[/tex] and applying the fundamental theorem of calculus, we have:
[tex]\[ - \left[ e^u \right]_{2 - x}^{-78} \][/tex]
Which simplifies to:
[tex]\[ - \left( e^{-78} - e^{2 - x} \right) \][/tex]
4. Simplify the expression:
Expanding the negative sign through the parentheses gives:
[tex]\[ = -e^{-78} + e^{2 - x} \][/tex]
Therefore, the final result of the integral is:
[tex]\[ e^{2 - x} - e^{-78} \][/tex]
In summary, the evaluated result of the integral is:
[tex]\[ \boxed{e^{2 - x} - e^{-78}} \][/tex]
We are given the following integral:
[tex]\[ \int_x^{80} e^{2 - t} \, dt \][/tex]
Here, [tex]\( t \)[/tex] is the variable of integration, and the limits of integration are from [tex]\( x \)[/tex] to 80. Let's proceed by solving this definite integral.
1. Determine the antiderivative:
The integrand [tex]\( e^{2 - t} \)[/tex] can be integrated using the standard rules for integration of exponential functions. We start by noting that the integral of [tex]\( e^{kt} \)[/tex] is [tex]\(\frac{1}{k} e^{kt} \)[/tex] for some constant [tex]\( k \)[/tex]. To utilize this, let's perform a substitution.
Let:
[tex]\[ u = 2 - t \][/tex]
Then, the differential [tex]\( du = -dt \)[/tex], or [tex]\( dt = -du \)[/tex].
2. Substitute and integrate:
Substituting [tex]\( u = 2 - t \)[/tex], the integral becomes:
[tex]\[ \int_x^{80} e^{2 - t} \, dt = \int_{x}^{80} e^{u} \cdot (-du) \][/tex]
Removing the negative sign and adjusting the limits for the substitution, we get:
[tex]\[ = -\int_{2 - x}^{2 - 80} e^{u} \, du \][/tex]
The limits of integration are now adjusted to [tex]\( 2 - x \)[/tex] to [tex]\( 2 - 80 \)[/tex].
Simplifying the limits:
[tex]\[ -\int_{2 - x}^{-78} e^{u} \, du \][/tex]
3. Resolve the integral:
The integral of [tex]\( e^u \)[/tex] is just [tex]\( e^u \)[/tex]. Hence, integrating from [tex]\( 2 - x \)[/tex] to [tex]\( -78 \)[/tex] and applying the fundamental theorem of calculus, we have:
[tex]\[ - \left[ e^u \right]_{2 - x}^{-78} \][/tex]
Which simplifies to:
[tex]\[ - \left( e^{-78} - e^{2 - x} \right) \][/tex]
4. Simplify the expression:
Expanding the negative sign through the parentheses gives:
[tex]\[ = -e^{-78} + e^{2 - x} \][/tex]
Therefore, the final result of the integral is:
[tex]\[ e^{2 - x} - e^{-78} \][/tex]
In summary, the evaluated result of the integral is:
[tex]\[ \boxed{e^{2 - x} - e^{-78}} \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thanks for visiting IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more helpful information.