Get expert advice and community support for all your questions on IDNLearn.com. Find in-depth and trustworthy answers to all your questions from our experienced community members.
Sagot :
To determine the magnitude of the magnetic force acting on a moving charge in a magnetic field, we use the formula:
[tex]\[ F = q \cdot v \cdot B \][/tex]
where:
- [tex]\( F \)[/tex] is the magnitude of the magnetic force,
- [tex]\( q \)[/tex] is the charge of the particle,
- [tex]\( v \)[/tex] is the velocity of the particle, and
- [tex]\( B \)[/tex] is the magnetic field strength.
Given values:
- The charge, [tex]\( q \)[/tex], is [tex]\( 5.0 \times 10^{-7} \)[/tex] Coulombs.
- The velocity, [tex]\( v \)[/tex], is [tex]\( 2.6 \times 10^5 \)[/tex] meters per second.
- The magnetic field strength, [tex]\( B \)[/tex], is [tex]\( 1.8 \times 10^{-2} \)[/tex] Tesla.
Next, we substitute these values into the formula to find [tex]\( F \)[/tex]:
[tex]\[ F = (5.0 \times 10^{-7} \, \text{C}) \times (2.6 \times 10^5 \, \text{m/s}) \times (1.8 \times 10^{-2} \, \text{T}) \][/tex]
When we calculate the above expression step-by-step:
1. Calculate the multiplication of the charge and velocity:
[tex]\[ 5.0 \times 10^{-7} \times 2.6 \times 10^5 = 1.3 \times 10^{-1} \][/tex]
(Here we have combined [tex]\( 5.0 \times 2.6 \)[/tex] which equals 13. After dividing by 10 position shifts to left [tex]\(1.3\times10^0 \)[/tex] reduces to [tex]\(1.3 \times 10^{-1}\)[/tex])
2. Multiply the result by the magnetic field strength:
[tex]\[ 1.3 \times 10^{-1} \times 1.8 \times 10^{-2} = 2.34 \times 10^{-3} \][/tex]
(Here, using the power rule [tex]\(a^b c^d = (ac)^(b+d)\)[/tex] and normal multiplication [tex]\( 1.3 \times 1.8 = 2.34\)[/tex])
Finally, we have:
[tex]\[ F = 2.34 \times 10^{-3} \, \text{N} \][/tex]
Therefore, the magnitude of the magnetic force acting on the charge is:
[tex]\[ 2.34 \times 10^{-3} \, \text{N} \][/tex]
From the given options, this corresponds to [tex]\( \boxed{2.3 \times 10^{-3} \, \text{N}} \)[/tex].
[tex]\[ F = q \cdot v \cdot B \][/tex]
where:
- [tex]\( F \)[/tex] is the magnitude of the magnetic force,
- [tex]\( q \)[/tex] is the charge of the particle,
- [tex]\( v \)[/tex] is the velocity of the particle, and
- [tex]\( B \)[/tex] is the magnetic field strength.
Given values:
- The charge, [tex]\( q \)[/tex], is [tex]\( 5.0 \times 10^{-7} \)[/tex] Coulombs.
- The velocity, [tex]\( v \)[/tex], is [tex]\( 2.6 \times 10^5 \)[/tex] meters per second.
- The magnetic field strength, [tex]\( B \)[/tex], is [tex]\( 1.8 \times 10^{-2} \)[/tex] Tesla.
Next, we substitute these values into the formula to find [tex]\( F \)[/tex]:
[tex]\[ F = (5.0 \times 10^{-7} \, \text{C}) \times (2.6 \times 10^5 \, \text{m/s}) \times (1.8 \times 10^{-2} \, \text{T}) \][/tex]
When we calculate the above expression step-by-step:
1. Calculate the multiplication of the charge and velocity:
[tex]\[ 5.0 \times 10^{-7} \times 2.6 \times 10^5 = 1.3 \times 10^{-1} \][/tex]
(Here we have combined [tex]\( 5.0 \times 2.6 \)[/tex] which equals 13. After dividing by 10 position shifts to left [tex]\(1.3\times10^0 \)[/tex] reduces to [tex]\(1.3 \times 10^{-1}\)[/tex])
2. Multiply the result by the magnetic field strength:
[tex]\[ 1.3 \times 10^{-1} \times 1.8 \times 10^{-2} = 2.34 \times 10^{-3} \][/tex]
(Here, using the power rule [tex]\(a^b c^d = (ac)^(b+d)\)[/tex] and normal multiplication [tex]\( 1.3 \times 1.8 = 2.34\)[/tex])
Finally, we have:
[tex]\[ F = 2.34 \times 10^{-3} \, \text{N} \][/tex]
Therefore, the magnitude of the magnetic force acting on the charge is:
[tex]\[ 2.34 \times 10^{-3} \, \text{N} \][/tex]
From the given options, this corresponds to [tex]\( \boxed{2.3 \times 10^{-3} \, \text{N}} \)[/tex].
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Thank you for choosing IDNLearn.com. We’re here to provide reliable answers, so please visit us again for more solutions.