Find the best answers to your questions with the help of IDNLearn.com's expert contributors. Our community is here to provide the comprehensive and accurate answers you need to make informed decisions.
Sagot :
To find [tex]\( h'(4) \)[/tex] given [tex]\( h(x) = \sqrt{4 + 3f(x)} \)[/tex], where [tex]\( f(4) = 4 \)[/tex] and [tex]\( f'(4) = 3 \)[/tex], let's perform the following steps:
1. Differentiate [tex]\( h(x) \)[/tex] with respect to [tex]\( x \)[/tex]:
Given [tex]\( h(x) = \sqrt{4 + 3f(x)} \)[/tex], we need to differentiate this with respect to [tex]\( x \)[/tex].
First, let's set:
[tex]\[ u = 4 + 3f(x) \][/tex]
Thus, [tex]\( h(x) = \sqrt{u} \)[/tex].
The derivative [tex]\( h'(x) \)[/tex] can be found using the chain rule. We first differentiate [tex]\( \sqrt{u} \)[/tex] with respect to [tex]\( u \)[/tex] and then multiply by the derivative of [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx} \sqrt{u} = \frac{1}{2\sqrt{u}} \cdot \frac{du}{dx} \][/tex]
2. Differentiate [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
Recall that:
[tex]\[ u = 4 + 3f(x) \][/tex]
Therefore:
[tex]\[ \frac{du}{dx} = 3 \frac{df(x)}{dx} = 3f'(x) \][/tex]
Now, we have:
[tex]\[ \frac{d}{dx} \sqrt{4 + 3f(x)} = \frac{1}{2\sqrt{4 + 3f(x)}} \cdot 3f'(x) \][/tex]
Simplifying:
[tex]\[ h'(x) = \frac{3f'(x)}{2\sqrt{4 + 3f(x)}} \][/tex]
3. Evaluate [tex]\( h'(x) \)[/tex] at [tex]\( x = 4 \)[/tex]:
We are given [tex]\( f(4) = 4 \)[/tex] and [tex]\( f'(4) = 3 \)[/tex]. Substitute these values into the expression for [tex]\( h'(x) \)[/tex]:
[tex]\[ h'(4) = \frac{3 f'(4)}{2\sqrt{4 + 3 f(4)}} \][/tex]
Substitute [tex]\( f(4) = 4 \)[/tex] and [tex]\( f'(4) = 3 \)[/tex]:
[tex]\[ h'(4) = \frac{3 \cdot 3}{2\sqrt{4 + 3 \cdot 4}} \][/tex]
Simplify inside the square root:
[tex]\[ 4 + 3 \cdot 4 = 4 + 12 = 16 \][/tex]
Thus:
[tex]\[ h'(4) = \frac{9}{2 \cdot \sqrt{16}} = \frac{9}{2 \cdot 4} = \frac{9}{8} \][/tex]
Therefore, the derivative [tex]\( h'(4) \)[/tex] is:
[tex]\[ h'(4) = \frac{9}{8} \][/tex]
1. Differentiate [tex]\( h(x) \)[/tex] with respect to [tex]\( x \)[/tex]:
Given [tex]\( h(x) = \sqrt{4 + 3f(x)} \)[/tex], we need to differentiate this with respect to [tex]\( x \)[/tex].
First, let's set:
[tex]\[ u = 4 + 3f(x) \][/tex]
Thus, [tex]\( h(x) = \sqrt{u} \)[/tex].
The derivative [tex]\( h'(x) \)[/tex] can be found using the chain rule. We first differentiate [tex]\( \sqrt{u} \)[/tex] with respect to [tex]\( u \)[/tex] and then multiply by the derivative of [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx} \sqrt{u} = \frac{1}{2\sqrt{u}} \cdot \frac{du}{dx} \][/tex]
2. Differentiate [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
Recall that:
[tex]\[ u = 4 + 3f(x) \][/tex]
Therefore:
[tex]\[ \frac{du}{dx} = 3 \frac{df(x)}{dx} = 3f'(x) \][/tex]
Now, we have:
[tex]\[ \frac{d}{dx} \sqrt{4 + 3f(x)} = \frac{1}{2\sqrt{4 + 3f(x)}} \cdot 3f'(x) \][/tex]
Simplifying:
[tex]\[ h'(x) = \frac{3f'(x)}{2\sqrt{4 + 3f(x)}} \][/tex]
3. Evaluate [tex]\( h'(x) \)[/tex] at [tex]\( x = 4 \)[/tex]:
We are given [tex]\( f(4) = 4 \)[/tex] and [tex]\( f'(4) = 3 \)[/tex]. Substitute these values into the expression for [tex]\( h'(x) \)[/tex]:
[tex]\[ h'(4) = \frac{3 f'(4)}{2\sqrt{4 + 3 f(4)}} \][/tex]
Substitute [tex]\( f(4) = 4 \)[/tex] and [tex]\( f'(4) = 3 \)[/tex]:
[tex]\[ h'(4) = \frac{3 \cdot 3}{2\sqrt{4 + 3 \cdot 4}} \][/tex]
Simplify inside the square root:
[tex]\[ 4 + 3 \cdot 4 = 4 + 12 = 16 \][/tex]
Thus:
[tex]\[ h'(4) = \frac{9}{2 \cdot \sqrt{16}} = \frac{9}{2 \cdot 4} = \frac{9}{8} \][/tex]
Therefore, the derivative [tex]\( h'(4) \)[/tex] is:
[tex]\[ h'(4) = \frac{9}{8} \][/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your questions deserve precise answers. Thank you for visiting IDNLearn.com, and see you again soon for more helpful information.